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Abstract. This paper presents necessary and sufficient conditions for the existence of common

cyclical features in Vector Autoregressive (VAR) process integrated of order 0, 1, 2, where the com-

mon cyclical features correspond to codependence (CD), serial correlation common features (CS),

or commonality in the final equations (CE). The results are based on polynomial rank factorizations

of the reversed AR polynomial around the poles of its inverse. All processes with CS structures

are found to present also CE structures and vice versa. The presence of CD structures, instead,

implies the presence of both CS and CE structures, but not vice versa. Characterizations of the

CS, CE, CD linear combinations are given in terms of linear subspaces defined in the polynomial

rank factorizations.

1. Introduction

Several macroeconomic theories predict the presence of common dynamic components in eco-
nomic time series. For example, the life-cycle hypothesis and permanent income hypothesis relate
current consumption to (the present value of) life-income or real wealth, hence implying com-
mon trends and cycles between these variables, see Hall (1978) and Campbell and Mankiw (1990).
Similarly co-movements among national consumption aggregates are predicted by international
risk-sharing, see Cavaliere, Fanelli, and Gardini (2008) and reference therein. Other economic
theories with similar implications include: international equalization of interest rates, see Kugler
and Neusser (1993), present value models, see Campbell and Shiller (1987), and balanced growth
models, see King, Plosser, Stock, and Watson (1991).

In several of these models, commonality in dynamic behavior is implied by the first order con-
ditions of optimizing agents. Let Xt denote a vector of observable time series, and let Xt−1

t−k :=
(Xt−k, . . . , Xt−1); optimization usually implies that some function yt := g(Xt, X

t−1
t−k) has zero ex-

pectation conditional on information available at time t− 1, which includes Xt−1
t−k ; this implies that

yt is unpredictable and hence it does not contain any cyclical component. A leading special case
is when g is a linear function, which corresponds to the notion of common features introduced by
Vahid and Engle (1993) and Engle and Kozicki (1993).
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Special cases of common features are common trends and common cycles. Common trends are
associated with the notion of cointegration (CI) introduced in Engle and Granger (1987). The
relation between CI and the existence of common trends is the subject of Granger’s representation
theorem, which was proved by Johansen for VAR processes integrated of order 1 and 2, I(1) and
I(2). Cointegration has generated a vast literature, see Johansen (2009) for a recent summary.

Common cycles have also received considerable attention, usually within systems which also
display common trends, see e.g. Kugler and Neusser (1993), Lippi and Reichlin (1994), Vahid and
Issler (2002), Hecq, Palm, and Urbain (2002, 2006), Paruolo (2003, 2006), Schleicher (2007) and
Cubadda, Hecq, and Palm (2009).

Several notions of common cycles have been proposed in the literature. Engle and Kozicki (1993)
and Cubadda and Hecq (2001) proposed the notion of (polynomial-) serial correlation common
features, here indicated as CS(d); these correspond to common factors in the AR representation, and
d indicates the degree of the AR polynomial of the CS linear combination. Alternatively, Gourieroux
and Peaucelle (1988) and Vahid and Engle (1997) formalized the notion of co-dependence, which
requires commonality in the MA representation, i.e. collinearity in the impulse responses; we
indicate it with CD(d), where d is the degree of the MA polynomial of the CD linear combination.
Yet another form of common dynamics requires common factors in the set of final equations (FE),
see eq. (2.7) in Zellner and Palm (1974) and Cubadda, Hecq, and Palm (2009); we refer to this
notion as CE(d), where d refers to the degree of the MA polynomial in the FE of the CE linear
combination.

Several aspects of the relationships among these notions for VAR processes have been investigated
in the literature. Engle and Kozicki (1993) and Vahid and Engle (1993) considered implications of
CI on the existence of CS(0). They noted that I(1) VARs with CI are compatible with CS(0) in the
growth rate of the process, and a necessary condition for this is that the CS(0) linear combinations
must belong to the orthogonal complement of the space spanned by the adjustment coefficients in
the error correction term. Cubadda and Hecq (2001) and Hecq, Palm, and Urbain (2006) defined
and discussed the case of CS(d) in CI I(1) VARs, where the CS linear combinations always load the
contemporaneous growth rate of the process. Paruolo (2003, 2006) gave extensions to cases of I(1)
and I(2) systems with CS(d) linear combinations that possibly involve both or either the growth
rates and deviations from equilibria.

Some implications of CD(d) on VAR processes were discussed in Kugler and Neusser (1993),
who noted that CD(d) implies the orthogonality between the CD linear combinations and some
(implicitly defined) function of the AR coefficients that one encounters in the recursive calculation
of the MA coefficients. Finally Cubadda, Hecq, and Palm (2009) considered the implications
of CS and CI on the FE representation of VAR processes, en route to obtain the orders of the
univariate ARMA(p, q) representations of single component time series. In particular they derived
the implications of CS(d) on p, q for d ≥ 0, both for stationary and CI VAR processes with I(1)
variables.

This paper provides a comprehensive and unified discussion of the relationships among CS,
CD, CE. We present necessary and sufficient conditions for CS, CD, CE and their possible joint
occurrence for the case of I(0), I(1) and I(2) VARs. These results extend and complement the
results available in the literature cited above, as discussed in details below.

We present two types of propositions, one which concerns the existence and the other one that
concerns the characterization of the common features linear subspaces, both of which are based on
algebraic relations between a matrix polynomial and its determinant and adjoint. The existence
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results consist of necessary and sufficient conditions for CS, CD, CE in terms of the order of the
pole at 0 of the inverse of the reversed AR matrix polynomial. Some implications of the existence
results are the following. Cubadda, Hecq, and Palm (2009) showed that CS implies CE; the
existence results also give the reverse implication, i.e. that CE implies CS. In addition existence
results show that CD implies CS and CE, but that the converse does not hold.

The characterization results consist of necessary and sufficient conditions that a CS, CD, CE
linear combinations need to satisfy, such as belonging to certain linear subspaces, associated with
the expansion of the inverse of the AR polynomial around its poles; see Franchi and Paruolo (2009).
The conditions are always translated also in terms of the subspaces directly related to the VAR
polynomial. These conditions consist typically in some orthogonality conditions (which can be
formulated as reduced rank conditions), plus a full rank condition.

Reduced rank restrictions on VAR coefficient matrices have been proposed in the time series
literature as a way to obtain parameter parsimony; special cases are the index models (IM) of
Reinsel (1983) and the nested reduced rank specification (NRR) of Ahn and Reinsel (1988). The
rank conditions derived here are more complicated than the ones in IM and NRR; they are motivated
not by parameter parsimony but as the restrictions corresponding one-to-one to commonality in
cyclical features of the system. However, in characterizing CS structure below, we show a connection
between IM and NRR and CS, observing that both IM and NRR imply CS, but they are not implied
by it.

The versions of the characterization conditions based on the VAR coefficient matrices will hope-
fully allow to devise explicit formulations of restricted VARs with CS, CD, CE features. This will
then permit to conduct inference on the presence of CS, CD, CE features in VARs by likelihood-
based methods. Inference aspects, however, fall outside the scope of the present paper, which
focuses on the characterization of CS, CD, CE constraints. For reasons of simplicity, also the
extensions of the present results to the case of VARMA processes will not be pursued here.

VAR processes with rank restrictions are a special case of observable factor models. As an
example, the VAR(1) process Xt = AB′Xt−1 + εt with A and B full column rank matrices of
dimension p × r, r < p can be interpreted as a factor model Xt = AFt + εt where the r factors
Ft := B′Xt−1 are observable linear combinations of the past of the process. One can hence hope
that the results of the paper could find application also in the analysis of the larger class of dynamic
factor models.

The rest of the paper is organized as follows: Section 2 introduces notation and defines of
structures of interest, Section 3 and Section 4 collect the existence and the characterization results
for stationary VARs. Section 5 extends results to I(1) and I(2) systems, while Section 6 presents a
numerical example. Section 7 reports conclusions. Appendices contain proofs.

In the following we employ the following notational conventions: R and C indicate real and
complex numbers, |z| indicates the modulus of z, a := b and b =: a indicate that a is defined by
b. For any full column rank matrix γ ∈ Cp×r, γ∗ indicates the p× r matrix of complex conjugates
and γ′ the conjugate transpose of γ; in case γ is real, γ′ reduces to the transpose. We indicate by
col(γ) the linear span of the columns of γ with coefficients in the field C or R if γ is complex or real,
respectively. γ⊥ indicates a basis of col⊥(γ), the orthogonal complement of col(γ), γ̄ := γ(γ′γ)−1

so that Pγ := γ̄γ′ = γγ̄′ denotes the orthogonal projector matrix onto col(γ) and Mγ := I −Pγ the
orthogonal projector matrix onto col⊥(γ). For a matrix A we often employ a rank factorization of
the type A = −αβ′ where α and β are bases of col(A) and col(A′), and the negative sign is chosen
for convenience in the calculations.
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Any sum
∑b

n=a · where b < a is defined equal to 0. For any matrix polynomial γ(z) :=∑dγ

n=0 γnzn, z ∈ C, γn ∈ Cp×r where 0 < r ≤ p, we indicate its degree by dγ , i.e. dγ := deg γ(z)
and 0 < dγ < ∞; when γn ∈ Rp×r we say that γ(z) has real coefficients. The representation of γ(z)
around z = zu is written as γ(z) =

∑dγ

n=0 γu,n(z − zu)n, so that γ0,n = γn for z0 = 0. By γ‡(z) we
indicate the reversed polynomial of γ(z), i.e. γ‡(z) :=

∑dγ

n=0 γdγ−nzn and its representation around

z = zu is written as γ‡(z) =
∑dγ

n=0 γ
(u)
n (z − zu)n, so that γ

(0)
n = γdΠ−n for z0 = 0. Finally, 1j,k is

the indicator function equal to 1 if j = k and 0 otherwise.

2. Setup and definitions

In this section we introduce notation and state the autoregressive (AR), moving average (MA)
and final equations (FE) representation of a VAR system. We consider the vector autoregressive
process (VAR) of finite order dΠ

(1)
dΠ∑

n=0

ΠnXt−n = εt

where Πn ∈ Rp×p, Π0 = I and εt is a p-dimensional martingale difference sequence (with respect to
the natural filtration generated by Xt) with positive definite conditional covariance matrix Ω. A
leading example of this is when εt are Gaussian i.i.d. random vectors. Deterministic components
Dt are omitted from (1) for ease of exposition; they could be included by replacing Xt with Xt−Dt

or by replacing εt with εt + Dt.
Indicate the AR polynomial in (1) by Π(z) :=

∑dΠ
n=0 Πnzn, z ∈ C, and let k(z) := det Π(z),

K(z) := adjΠ(z) be respectively its characteristic and adjoint polynomials, where inv Π(z) =
K(z)/k(z). Remark that, because Π(z) has real coefficients, so do k(z) and K(z). It is useful
to factorize the characteristic polynomial in terms of its roots; because Π(0) = I, one can write
k(z) =

∏q
u=1(1 − wuz)au , where wu := z−1

u and zu is a root of k(z) with multiplicity au > 0. We
also define ρ := minu |zu| and observe that ρ > 0 because Π(0) = I.

Some of the factors in k(z) could be common to K(z); we state the cancellation of their common
factors as the following lemma, for ease of later reference. The same lemma gives also the order of
the pole of inv Π(z) at z = zu, labeled mu.

Lemma 2.1 (Co-prime polynomials G(z), g(z) and orders mu). One has

K(z) =: G(z)
q∏

u=1

(1− wuz)bu , 0 ≤ bu < au, G(zu) 6= 0,

where G(z) has real coefficients,

(2) inv Π(z) =
G(z)
g(z)

, z ∈ C \ {z1, . . . , zq} ,

where

(3) g(z) :=
q∏

u=1

(1− wuz)mu , mu := au − bu > 0,

has real coefficients, and inv Π(z) has a pole of order mu at z = zu.

We remark here that G(z) and g(z) also have real coefficients, because if a complex root is
common, so is its complex conjugate. Using this notation, we introduce the final equations (FE)
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form k(L)Xt = K(L)εt, see e.g. Zellner and Palm (1974), Cubadda, Hecq, and Palm (2009);
eliminating the common factors as in Lemma 2.1 one obtains

(4) g(L)Xt = G(L)εt,

which we refer to as the FE form of the VAR.
The power series representation of inv Π(z) has real coefficients, see (2), and it is written as

C(z) := inv Π(z) =
dC∑

n=0

Cnzn, |z| < ρ,

where dC < ∞ if and only if dg = 0, i.e. Π(z) is unimodular. Here C(0) = C0 = inv Π0 = inv I = I.
It is well known (see e.g. Brockwell and Davis, 1987, page 408) that if Π(z) has stable roots, i.e.
ρ > 1, then C(z) is holomorphic on a disk larger than the unit disk, and the moving average (MA)
form

(5) Xt = C(L)εt

corresponds to a linear process with second moments.
In order to define the common structures of interest we introduce matrix polynomials γ(z) :=∑dγ

n=0 γnzn, γn ∈ Rp×r, 0 < r ≤ p − 1, with γ0, γdγ are assumed of full column rank. A matrix
polynomial with this property is called of full column rank. The reason to consider full column
rank matrix polynomials is that if γ0 6= 0 is p × r and not of full column rank, then γ(z) can be
substituted with zaγ̃(z) where a > 0 and γ̃0 is of full column rank r1 < r. Similarly if γdγ 6= 0
is not full rank, γ(z) can be substituted with γ̃(z) where dγ̃ < dγ and γ̃dγ̃

is of full column rank
r1 < r. This leads to the following definitions.

Definition 2.2 (Common structures of interest). Let γ(z) :=
∑dγ

n=0 γnzn, z ∈ C, γn ∈ Rp×r, be a
full column rank matrix polynomial; then

Xt ∈ CS(dγ)
def⇔ γ′(L)Xt = γ′0εt, 0 ≤ dγ < dΠ,

and we say that Xt displays common serial correlation features in the AR representation (1) of
order dγ;

Xt ∈ CE(dγ)
def⇔ g(L)γ′0Xt = γ′(L)εt, 0 ≤ dγ < dG,

and we say that Xt displays commonality in the FE representation (4) of order dγ;

Xt ∈ CD(dγ)
def⇔ γ′0Xt = γ′(L)εt, 0 ≤ dγ < dC ,

and we say that Xt displays co-dependence in the MA representation (5) of order dγ.

We observe that this definition encompasses several special cases: serial correlation common
features as introduced in Engle and Kozicki (1993) correspond to the case CS(0) = CD(0). CD(dγ)
was introduced in Gourieroux and Peaucelle (1988), who considered finite-order moving averages
dC < ∞. CD(1) structures were studied in Vahid and Engle (1997), see also the scalar component
models in Tiao and Tsay (1989). Special cases of CS are given by the following notions: polynomial
serial correlation common features, defined in Cubadda and Hecq (2001) and discussed in Cubadda,
Hecq, and Palm (2009); weak and strong form reduced rank structures, see Hecq, Palm, and Urbain
(2006); unpredictable combinations, defined in Paruolo (2006). Finally CE structures are considered
in Cubadda, Hecq, and Palm (2009).



6

A central role in what follows is played by reversed polynomials, which we now introduce. For
any polynomial A(z) we define the † and ‡ operators as A†(z) := A(z−1), A‡(z) := zdAA†(z), so
that

(6) A‡(z) =
dA∑

n=0

AdA−nzn

is the reversed polynomial, i.e. the polynomial with the same coefficients of A(z) in reversed order.
In the following, the representation of A‡(z) around z = zu is written as A‡(z) =

∑dA
n=0 A

(u)
n (z−zu)n,

so that A
(0)
n = AdA−n for z0 = 0.

For example, the reversed AR polynomial Π‡(z) =
∑dΠ

n=0 ΠdΠ−nzn is often used to describe the
stability of the VAR system (see e.g. Fuller, 1996, page 77). We note here the connection of the †
operator (and a fortiori also of the ‡ operator) with the transformation z 7→ 1/z which maps each
point into its reciprocal, so that ∞ is mapped into 0 and 0 into ∞, see Greene and Krantz (1997),
Section 4.7. In particular this implies that the roots of det Π‡(z) are wu, the reciprocals of the
roots zu of the characteristic polynomial k(z) := det Π(z), plus a root at w0 := 0 which is present
when ΠdΠ

is singular, as shown in Theorem 3.1 in the next section.

3. Existence results

In this section we present existence results in Theorem 3.2, which link the degrees of the poly-
nomials Π(z), g(z) and G(z) with existence of CS, CE and CD. The necessary and sufficient
conditions for existence in Theorem 3.2 involve the index

(7) m0 := dΠ + dG − dg,

which is shown in the following Theorem 3.1 to equal to order of the pole at z = 0 of the reversed
AR polynomial Π‡(z).

Theorem 3.1. Let the ‡ operator be as in (6), w0 := 0 and wu := z−1
u , u = 1, . . . , q; then

(8) inv Π‡(z) = z−m0
G‡(z)
g‡(z)

, z ∈ C \ {w0, . . . , wq} ,

where G‡(0), g‡(0) 6= 0 and hence m0 in (7) is the order of the pole of inv Π‡(z) at z = 0.

The mapping z 7→ 1/z associated with the ‡ operator reveals all the points of rank-deficiency of
Π(z), finite or at ∞; these correspond to poles of order mu in inv Π‡(z) at z = wu, for u = 0, . . . , q.
Moreover, because Π(0) = I, the poles of inv Π‡(z) have all finite modulus. We are now in the
position to formulate the existence results for CS, CE and CD structures in terms of the order m0

in (7) and (8).

Theorem 3.2 (Existence of CS, CE, CD structures). Let m0 be as in (7) and (8); then

i) the following statements are equivalent:
i.1) ΠdΠ

is singular;
i.2) m0 > 0;
i.3) Xt ∈ CS(dγ) for some max(0, dΠ −m0) ≤ dγ ≤ dΠ − 1;
i.4) Xt ∈ CE(dγ) for some max(0, dG −m0) ≤ dγ ≤ dG − 1.

ii) if Xt ∈ CD(dγ) then 0 ≤ dγ ≤ m0 − dΠ; moreover, i.j) holds for any j = 1, . . . , 4;
iii) the statement i.j) for some j = 1, . . . , 4 does not imply Xt ∈ CD(dγ).
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Theorem 3.2 states that a CS (or a CE) structure of some degree exists whenever m0 > 0, i.e.
when the last coefficient matrix of Π(z) is singular. Moreover, CS and CE structures always coexist;
this gives a converse to Cubadda, Hecq, and Palm (2009, Proposition 8), who show that CS implies
CE. In addition, Theorem 3.2ii) shows that a CD structure of some degree exists only if m0 ≥ dΠ;
because dΠ > 0, this implies that if a CD structure exists, then also CS (and CE) structures exist.
The converse does not hold. Further one has that

dΠ −m0 = dg − dG

provides a lower bound for dγ in CS(dγ), and it reveals the highest reduction that can be achieved
by a CS relation. When this difference is negative the inequality dΠ −m0 ≤ dγ is trivially satisfied
because dγ ≥ 0 and it does not provide any relevant information regarding the AR part. However,
If Xt ∈ CD(dγ) then m0 − dΠ = dG − dg provides an upper bound for dγ , i.e. 0 ≤ dγ ≤ m0 − dΠ,
and it reveals the highest order of a CD relation. A similar interpretation applies to CE structures
in i.4). Hence the difference between the degrees of the adjoint and of the determinant of Π(z)
plays and important role in distinguishing cases with only CS and CE structures from the cases
where also CD are present.

4. Characterization of CS, CD and CE linear combinations

In this section we characterize CS, CD and CE linear combinations; the main results are contained
in Theorem 4.2 for CS structures, Theorem 4.3 for CE structures, Theorem 4.4 for CD structures.
Necessary and sufficient conditions are stated for each form of common cyclical features in terms
of linear subspaces, associated with the orders m0,m1, . . . ,mq of the poles of inv Π‡(z) defined in
eqs. (3), (7), (8).

The relevant subspaces are found through the ‘polynomial rank factorization’ of a matrix poly-
nomial at a given point; it consists in a sequence of mu rank factorizations on the matrices in eq.
(10) below. This definition also includes the matrices Π(u)

s,j,k which turn out to be useful in the
analysis of CE, CD structures.

Definition 4.1 (Polynomial rank factorization and matrices Π(u)
j,k , Π(u)

s,j,k). Let the ‡ operator be as

in (6), w0 := 0 and wu := 1/zu, u = 1, . . . , q, Π‡(z) =
∑dΠ

n=0 Π(u)
n (z−wu)n and define αu,0 and βu,0

of dimension p× ru,0, where 0 < ru,0 < p, from the matrix rank factorization

(9) Π(u)
0 = −αu,0β

′
u,0.

For j = 1, . . . , mu, let au,j := (αu,0 : · · · : αu,j−1), bu,j := (βu,0 : · · · : βu,j−1) and rmax
u,j :=

p −∑j−1
n=0 ru,n and define αu,j and βu,j of dimension p × ru,j, where 0 ≤ ru,j < rmax

u,j for j 6= mu

and 0 < ru,mu = rmax
u,mu

, from the matrix rank factorization

(10) Mau,jΠ
(u)
j,1 Mbu,j = −αu,jβ

′
u,j ,

where Π(u)
j,k is defined for j, k ≥ 1 from the recursions

(11) Π(u)
j,k := Π(u)

j−1,k+1 + Π(u)
j−1,1

j−2∑

n=0

β̄u,nᾱ′u,nΠ(u)
n+1,k
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with initial values Π(u)
0,k := Π(u)

k−1. Finally let Π(u)
1,j,k := Π(u)

j,k and for s = 2, . . . , t ≤ mu − 1, define

Π(u)
s,j,k from the recursions

(12) Π(u)
s,j+1,k := Π(u)

s−1,j+1,k+1 + Π(u)
s−1,j+1,1

mu−t∑

h=0

β̄u,hᾱ′u,hΠ(u)
1,h+1,k.

The polynomial rank factorization in Definition 4.1 gives a characterization of the set of reduced
rank restrictions that are satisfied by the coefficients of a matrix polynomial whose inverse function
has a pole of given order at a specific point. That is, if Π‡(z) and its derivatives at z = wu satisfy
those conditions, then inv Π‡(z) has a pole of order mu at the same point; the converse is also true,
i.e. if inv Π‡(z) has a pole of order mu at z = wu then Π‡(z) and its derivatives at z = wu satisfy
the rank restrictions of the polynomial rank factorization at that point. Hence the polynomial
rank factorization is a one to one and onto map from the structure of the matrix polynomial to
the nature of the singularity of its inverse function. This result is based on the recursive algorithm
developed in Franchi (2009) and further analyzed in Franchi and Paruolo (2009). The following
additional remarks are in order:

Remark 1. Eq. (9), (10) define αu,j , βu,j up to a conformable change of bases of the row and
column spaces; this indeterminacy does not affect the results, in the sense that the latter do not
depend on the particular choice of the pair αu,j , βu,j .
Remark 2. The p × p matrices (αu,0 : · · · : αu,mu) and (βu,0 : · · · : βu,mu) are non-singular
with orthogonal blocks, i.e. α′u,jαu,k = β′u,jβu,k = 0 for j 6= k. To simplify notation, we let
au,j := (αu,0 : · · · : αu,j−1), au,j⊥ := (αu,j : · · · : αu,mu) and observe that au,j is a real matrix if and
only if Imwu = 0. Similarly we define bu,j , bu,j⊥ in terms of βu,j blocks.
Remark 3. The conditions (10) are reduced-rank conditions for j = 1, · · · ,mu − 1, while the
terminal condition for j = mu is a full-rank condition. The matrices Mau,j = Pau,j⊥ , Mbu,j = Pbu,j⊥
are orthogonal projectors which successively eliminate subspaces until the terminal condition of full
rank is met. In fact for `, n ≥ j, ᾱ′u,`Mau,j = ᾱ′u,` − ᾱ′u,`Pau,j = ᾱ′u,` and Mbu,j β̄u,n = β̄u,n so that

using (10) one has ᾱ′u,`Π
(u)
j,1 β̄u,n = ᾱ′u,`Mau,jΠ

(u)
j,1 Mbu,j β̄u,n = −ᾱ′u,`αu,jβ

′
u,j β̄u,n, or

(13) ā′u,j⊥Π(u)
j,1 b̄u,j⊥ =

(
−Iru,j 0

0 0

)
.

Remark 4. For wu = 1, and mu = 1, mu = 2 these conditions were derived by Johansen (1992)
and are called the I(1) and I(2) conditions.
Remark 5. There is a duality between the polynomial rank factorizations of Π‡(z) and G‡(z).
That is, let αu,j , βu,j and ξu,j , ηu,j be respectively defined by the polynomial rank factorizations of
Π‡(z) and G‡(z) at z = wu; then for j = 0, . . . , mu, one has

(14) ξu,j = huβ̄u,mu−j and ηu,j = ᾱu,mu−j ,

where hu := g‡,u(wu) 6= 0 is a scalar and g‡(z) =: (z−wu)mug‡,u(z), see Franchi and Paruolo (2009)
for the proof. This can be seen as a generalization of Proposition 8 in Cubadda, Hecq, and Palm
(2009) about the presence of a factor structure in the adjoint under CS.

We are now in the position to give a characterization of the common structures of interest,
starting from CS structures.

Theorem 4.2 (Characterization of CS structures). Let a0,j, b0,j be defined by the polynomial rank
factorization of Π‡(z) at w0 := 0, Π(z) =

∑dΠ
n=0 Πnzn and γ(z) :=

∑dγ

n=0 γnzn be of full column
rank and degree max(0, dΠ −m0) ≤ dγ ≤ dΠ − 1; then the following statements are equivalent:
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i) γ′(L)Xt = γ′0εt;
ii) γ′(z) = γ′0Π(z);

iii) γ′0Πdγ has full row rank and γ′0(Πdγ+1 : · · · : ΠdΠ
) = 0;

iv) let ` := dΠ − dγ; then

γ0 = a0,`⊥ϕ0

where ϕ′0a
′
0,`⊥Πdγ has full row rank and

ϕ′0a
′
0,`⊥(Πdγ+1b0,`−1 : · · · : ΠdΠ−1b0,1) = 0.

Theorem 4.2 gives three equivalent characterizations of the CS structure, whose definition is
reproduced in i). In ii) one sees that once γ0 is selected, then γ(z) can be determined from
the equality γ′(z) = γ′0Π(z), i.e. as γ′n = γ′0Πn, n = 1, . . . , dγ , and γ′0Πdγ has full row rank.
In iii) one sees that γ0 is a basis of the orthogonal complement of col(Πdγ+1 : · · · : ΠdΠ

) and
satisfies a terminal full rank condition. The former orthogonality conditions can be expressed also
as γ0 ∈ ∩dΠ

i=dγ+1 col⊥Πi, which is implied by the nested reduced rank specification of Ahn and
Reinsel (1988) and by the index models of Reinsel (1983). We observe here that iii) does not
imply col(Πj) ⊃ col(Πj+1), which corresponds to nested reduced rank specifications, or Π(z) =
I + α(z)β′(z) in an obvious notation, which characterizes index models.

Theorem 4.2 iv) gives a characterization of γ0 in terms of the coefficients of the polynomial rank
factorization of Π‡(z) at 0; first it shows that γ0 belongs to the space spanned by the columns of
a0,`⊥ := (α0,` : · · · : α0,m0) where ` := dΠ−dγ . Hence when dγ = dΠ− 1, γ0 ∈ col(α0,1 : · · · : α0,m0),
while when dγ = dΠ−m0 > 0 one has γ0 = α0,m0ϕ0. Thus the smaller dγ in CS(dγ), the smaller is
the linear space in which γ0 can be chosen.

This condition that γ0 belongs to the given linear space is, however, only necessary and not
sufficient in order to obtain CS; the additional condition a′0,`⊥(Πdγ+1b0,`−1 : · · · : ΠdΠ−1b0,1) of
reduced rank is needed. This determines ϕ0 as a basis of col⊥ a′0,`⊥(Πdγ+1b0,`−1 : · · · : ΠdΠ−1b0,1)
and completes the characterization of γ0.

The case of CE structures is considered in the next theorem.

Theorem 4.3 (Characterization of CE structures). Let a0,j, b0,j be defined by the polynomial rank
factorization of Π‡(z) at w0 := 0, G(z) =

∑dG
n=0 Gnzn and γ(z) :=

∑dγ

n=0 γnzn be of full column
rank and degree max(0, dG −m0) ≤ dγ ≤ dG − 1; then the following statements are equivalent:

i) g(L)γ′0Xt = γ′(L)εt;
ii) γ′(z) = γ′0G(z);

iii) γ′0Gdγ has full row rank and γ′0(Gdγ+1 : · · · : GdG
) = 0;

iv) let ` := m0 − dG + dγ + 1; then

γ0 = b0,`ϕ0

where one of the following equivalent sets of conditions holds:
iv.1) ϕ′0b

′
0,`Gdγ has full row rank and

ϕ′0b
′
0,`(Gdγ+1a0,`+1⊥ : · · · : GdG−1a0,m0⊥) = 0;

iv.2) ϕ′0,`−1β
′
0,`−1β0,`−1α

′
0,`−1 + H0ā

′
0,`⊥ has full row rank with

H0 := h0

`−1∑

j=0

ϕ′0,jᾱ
′
0,j(Π

(0)
1,j+1,1β0,` : · · · : Π(0)

dG−dγ ,j+1,1β0,m0)
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and
`−1∑

j=0

ϕ′0,jᾱ
′
0,j(Π

(0)
1,j+1,1b0,`+1 : · · · : Π(0)

m0−`,j+1,1b0,m0) = 0.

Theorem 4.3 is the dual of Theorem 4.2 for CE structures and its interpretation is exactly as
above, with the role of G(z) in Theorem 4.3 is the same as the one of Π(z) in Theorem 4.2. In fact
Π·, a0,·⊥ and b0,· in iv), Theorem 4.2, are respectively replaced by G·, b0,· and a0,·⊥ in Theorem 4.3
iv.1); this is a consequence of the duality result discussed in Remark 5 above, eq. (14).

Theorem 4.3 iv) states that γ0 belongs to the space spanned by the columns of b0,` := (β0,0 : · · · :
β0,`−1) where ` := m0− dG + dγ +1. Similarly to the CS case, shorter CE structures correspond to
smaller linear subspaces: from γ0 = (β0,0 : · · · : β0,m0−1)ϕ when dγ = dG − 1 to dγ = dG −m0 > 0
for which γ0 = β0,0ϕ. As in the CS case, Theorem 4.3 iv.1) states also the additional condition
b′0,`(Gdγ+1a0,`+1⊥ : · · · : GdG−1a0,m0⊥).

The conditions Theorem 4.3 iv.1) are stated in terms of the coefficients of the reduced adjoint
G(z), while in Theorem 4.3 iv.2) the characterization is given in terms of the polynomial rank
factorization of Π‡(z) at w0 = 0. The latter characterization involves blocks of the Π(u)

s,j,k matrices
introduced in Definition 4.1. Also these conditions involve some reduced rank conditions and a full
rank condition.

Finally we turn to CD structures.

Theorem 4.4 (Characterization of CD structures). Let w0 := 0, wu := 1/zu, u = 1, . . . , q, and
define au,j, bu,j from the polynomial rank factorization of Π‡(z) at wu, u = 0, . . . , q; furthermore
let G(z) =

∑dG
n=0 Gu,n(z − zu)n, where G0,n := Gn, and γ(z) :=

∑dγ

n=0 γnzn be of full column rank
and degree 0 ≤ dγ ≤ m0 − dΠ. Then the following statements are equivalent:

i) γ′0Xt = γ′(L)εt;
ii) γ′(z) = γ′0 inv Π(z);

iii) γ′0(Gdg+dγ+1 : · · · : GdG
) = 0 and γ′0(Gu,dG−mu+1 : · · · : Gu,dG

) = 0, for u = 1, . . . , q;
iv) let ` := dΠ + dγ + 1; then

col γ0 ⊂ (col b0,` ∩q
u=1 colβu,0)

with representation

γ0 = b0,`ϕ0 = βu,0ϕu, u = 1, . . . , q,

where one of the following equivalent sets of conditions holds:
iv.1) ϕ′0b

′
0,`Gdg+dγ has full row rank and

ϕ′0b
′
0,`(Gdg+dγ+1a0,`+1⊥ : · · · : GdG−1a0,m0⊥) = 0

and for u 6= 0, ϕ′uβ′u,0Gu,dG−mu has full row rank and

ϕ′uβ′u,0(Gu,dG−mu+1au,2⊥ : · · · : Gu,dG−1au,mu⊥) = 0;

iv.2) ϕ′0,dΠ+dγ
β′0,dΠ+dγ

β0,dΠ+dγα′0,dΠ+dγ
+H0ā

′
0,`⊥, with H0 := h0

∑dΠ+dγ

j=0 ϕ′0,jᾱ
′
0,j(Π

(0)
1,j+1,1β0,` :

· · · : Π(0)
m0−`+1,j+1,1β0,m0), has full row rank and

dΠ+dγ∑

j=0

ϕ′0,jᾱ
′
0,j(Π

(0)
1,j+1,1b0,`+1 : · · · : Π(0)

m0−`,j+1,1b0,m0) = 0
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and for u 6= 0, ϕ′u,0β
′
u,0βu,0α

′
u,0 + Huā′u,1⊥, with Hu := huϕ′u,0ᾱ

′
u,0(Π

(u)
1,1,1βu,1 : · · · :

Π(u)
mu,1,1βu,mu), has full row rank and

ϕ′u,0ᾱ
′
u,0(Π

(u)
1,1,1bu,2 : · · · : Π(u)

mu−1,1,1bu,mu) = 0.

Theorem 4.4 has the same structure as Theorems 4.2 and 4.3. Three equivalent formulations of
the CD structures as defined in Theorem 4.4 i). The equality in Theorem 4.4 ii) has, however, an
important difference from its counterpart of ii) in Theorems 4.2 and 4.3. In fact, see Lemma 2.1,
inv Π(z) has poles at the characteristic roots while γ′(z) = γ′0 inv Π(z) is a matrix polynomial and
hence it has no poles; this can be the case if and only if γ0 cancels the principal part of inv Π(z)
so that γ′(z) = γ′0R(z), see (37) in the Appendix. Because R(z) is a matrix polynomial of degree
dG−dg and dG−dg = m0−dΠ, see (7), this gives an alternative explanation of why CD structures
have degree 0 ≤ dγ ≤ m0 − dΠ.

Next we turn to Theorem 4.4 iii) and recall that the principal part of inv Π(z) in (37) in the
Appendix is

∑q
u=1

Bu(z)
(1−wuz)mu , where Bu(z) =

∑mu−1
n=0 Bu,n(1 − wuz)n; because Bu,n is a linear

combination with scalar weights of Gu,n and γ′0Bu(z) = 0 if and only if γ′0Bu,n = 0 then γ0 cancels
the principal part if and only if γ′0(Gu,dG−mu+1 : · · · : Gu,dG

) = 0, u = 1, . . . , q. The role of
γ′0(Gdg+dγ+1 : · · · : GdG

) = 0 is then to determine the length dγ of a CD structure.
The conditions in Theorem 4.4 iii) are of the same type of the conditions in Theorem 4.3 iii),

with the difference that they not only involve the coefficients of the Taylor expansion of G(z) around
z = 0 but also the ones of the expansions around each characteristic roots.

Theorem 4.4 iv.1) is derived applying Theorem 4.3 iv.1) at each characteristic root by letting
dγu := dG −mu, u = 1, . . . , q, and dγ0 := dγ − dg; then vu := βu,0ϕu and the additional reduced
rank condition β′u,0(Gu,dG−mu+1au,2⊥ : · · · : Gu,dG−1au,mu⊥) = ϕu⊥η′u holds for u = 1, . . . , q and
in the same way v0 := b0,`ϕ0 with ϕ′0b

′
0,`(GdG−`+1a`+1⊥ : · · · : GdG−1am0⊥) = 0. Because γ0 must

satisfy the conditions in Theorem 4.4 iii) then it must be a basis of ∩q
u=0 col vu. Conversely, if γ0

is basis of ∩q
u=0 col vu, then point Theorem 4.4 iii) holds.

Finally we observe that vu := βu,0ϕu does not vary with dγ , i.e. the length of a CD structure
restricts γ0 only through v0 := b0,`ϕ0 where ` := dΠ+dγ+1. As above, shorter CD structures restrict
the portion of space in which v0 can be found; it is interesting to note that when dγ = m0−dΠ one
has ` = m0 + 1, i.e. v0 = (β0 : · · · : βm0)ϕ0 which means that the only restrictions are the ones at
the characteristic roots. In the other cases one has v0 = (β0 : · · · : β`−1)ϕ0 up to the limiting case
dγ = 0 in which v0 = (β0 : · · · : βdΠ

)ϕ0.
As in the preceding theorems, in Theorem 4.4 iv.2) we translate the conditions on left null spaces

of the G coefficients into their counterpart in terms of the coefficients introduced in Definition 4.1
and, as in Theorem 4.4 iv.1), the conditions are given by a reduced rank and a full rank condition.

5. I(1) and I(2) systems

In this section we show how the results given for stationary VARs can be directly extended to
VAR systems with I(1) and I(2) variables. The main idea is that Johansen’s representation theorems
for I(1) and I(2) VAR systems (see Johansen, 1996, Chapter 4) imply that one can transform the
original system variables into a stationary VAR process of the same dimension. The results of the
previous sections then apply to the transformed system.

Consider first an I(1) VAR(dA) process A(L)Yt = ut with error correction representation

(15) Γ(L)∆Yt = α0β
′
0Yt−1 + ut
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where ∆ := 1−L, Γ(L) = I−∑dΓ
i=1 ΓiL

i, dA = dΓ +1. The VAR polynomial A(z) = I(1−z)Γ(z)−
α0β

′
0z has polynomial rank factorization around the point z1 = 1 of the type A

(1)
0 = −α0β

′
0,

Ma1A
(1)
1,1Mb1 = −α1β

′
1 with α0, β0 and α1, β1 of full column ranks equal to r and p− r respectively.

The stationary transformation of system Yt in (15) for I(1) systems can be found in Johansen (1996)
pages 50-53, and it has been used in Paruolo (2003) in the context of CS(d). We re-state it for ease
of reference in the following lemma.

Lemma 5.1 (I(1) VAR). Let A(L)Yt = ut be a VAR(dA) of dimension p, with A
(1)
0 = −α0β

′
0,

Ma1A
(1)
1,1Mb1 = −α1β

′
1, with α0, β0 and α1, β1 of full column ranks equal to r and p−r respectively,

and define

Xt := (Y ′
t β0 : ∆Y ′

t β1)′,

still of dimension p× 1; then Xt follows a VAR process

Π(L)Xt = εt

with εt := (β0 : β1)′ut, dΠ = dA and ΠdΠ
= (ΠdΠ,0 : 0p×(p−r)), where we have partitioned the Πj

matrices in blocks of columns conformable with the two components of Xt. Moreover the charac-
teristic roots of Π(z) are the same as the ones of A(z), except for the p− r characteristic roots at
z = 1 of A(z) that are absent from of Π(z).

A similar result applies to the I(2) VAR(dA) process A(L)Yt = ut in (15) above, as proved in
Theorem 3 in Paruolo (2006), to which we refer for a proof. We reproduce here a part of its
statement in the present notation.

Lemma 5.2 (I(2) VAR). Let A(L)Yt = ut be a VAR(dA) of dimension p, with A
(1)
0 = −α0β

′
0,

Ma1A
(1)
1,1Mb1 = −α1β

′
1, Ma2A

(1)
2,1Mb2 = −α2β

′
2, with α0, β0, and α1, β1 and α2, β2 of full column

ranks equal to r0 and r1 and p− r0 − r1 respectively, and define

Xt := (Y ′
t β0 + ∆Y ′

t β2δ
′ : ∆Y ′

t β1 : ∆2Y ′
t β2)′,

δ := −ᾱ′0A
(1)
1,1β̄2 where Xt is still of dimension p× 1; then Xt follows a VAR process

Π(L)Xt = εt

with εt := (β0+β2δ
′ : β1 : β2)′ut, dΠ = dA and ΠdΠ

= (ΠdΠ,0 : 0p×(p−r1)), ΠdΠ,0δ = −ΠdΠ−1,2, where
we have partitioned the Πj matrices in blocks of columns conformable with the three component of
Xt. Moreover the characteristic roots of Π(z) are the same as the ones of A(z), except for the
2(p− r0 − r1) + r1 characteristic roots at z = 1 of A(z) that are absent from of Π(z).

Lemmas 5.1 and 5.2 show that the results in Sections 3 and 4 apply to the systems Xt derived
from the original variables Yt. The transformations from Yt to Xt depend only on CI coefficients,
and they do not alter the stationary roots of the system, which are the ones associated with cycles.

We observe that this allows to have CS, CD, CE structures both in the ∆Yt and in β′0Yt in
I(1) systems. This enlarges a common tenet that all CS must involve ∆Yt; here they may involve
only β′0Yt. Similarly CS, CD, CE structures are here defined for I(2) systems in ∆2Yt, β′1∆Yt and
β′0∆Yt + δβ′2∆Yt. This type of enlargement was suggested by Paruolo (2003, 2006) for CS systems
in I(1) and I(2) systems, and it is applied here also to CD and CE structures.

We note that ΠdΠ
in Lemmas 5.1 and 5.2 are singular, and hence Theorem 3.2 i.1) implies that all

I(1) and I(2) VAR processes at least present CS and CE; obviously, all remaining characterizations
can be further applied, possibly leading also to CD structures.



13

6. A numerical example

For ` = ω, ψ, let 1`,ψ = 0 if ` = ω and 1`,ψ = 1 if ` = ψ and consider Π`(L)X`
t = εt, where

Π`(z) :=

(
1 0
0 1

)
+

1
3

(
3 4
−6 −5 + 1`,ψ

)
z − 1

2

(
1
1

)
(1 : 1) z2,

with MA representations X`
t =

∑∞
n=0 C`

nεt−n, where

Cω
0 = Cψ

0 =

(
1 0
0 1

)
, Cω

1 = Cψ
1 =

1
3

(
−3 −4
6 5− 1`,ψ

)
,

and for n = 2, 3, . . . , Cψ
n is non-singular and

Cω
n =

cn

18

(
−7
11

)
(3 : 1) where cn :=

(
2
3

)n−2

.

We want to characterize the CS, CE and CD structures of the two processes. First we compute
the polynomial rank factorizations of Π`

‡(z) at 0, see Definition 4.1; these give α`
0 = (1 : 1)′, β`

0 =
1
2(1 : 1)′, αω

1 = αω
2 = βω

1 = βω
2 = (0 : 0)′ and αω

3 = αψ
1 = (1 : −1)′, βω

3 = 1
3(−1 : 1)′, βψ

1 = 1
12(−1 : 1)′

so that mω
0 = 3, mψ

0 = 1. Then, see Theorem 4.2, X`
t ∈ CS(1) with γ0 = αω

3 = αψ
1 = (1 : −1)′ and,

see Theorem 4.3, X`
t ∈ CE(1) with γ0 = β`

0 = 1
2(1 : 1)′. This shows that the processes share the

same common serial correlation features in the AR representation and the same commonality in the
FE representation, see Definition 2.2. Finally we consider co-dependence in the MA representation;
while mψ

0 < dΠ implies that Xψ
t does not display it, mω

0 > dΠ does not rule it out for Xω
t . Because

detΠω(z) = −1
3(2z−3), one has z1 = 3

2 and mω
1 = 1, and the polynomial rank factorization of Πω

‡ (z)
at z = 2

3 gives αω
1,0 = (−1

3 : 1)′, βω
1,0 = 1

6(11 : 7)′ and αω
1,1 = (3 : 1)′, βω

1,1 = 4
1275(7 : −11)′. Hence

Xω
t ∈ CD(1) with γ0 = βω

1,0 = 1
6(11 : 7)′, see Theorem 4.4. We remark that these results have been

directly derived from the polynomial rank factorization of the AR polynomial at w0 := 0, w1 := 2
3 ,

so that only the knowledge of Π(z) is needed. Note that the two processes are indistinguishable
from the perspective of the column spaces of the VAR coefficients, i.e. the intersection of their left
null spaces does not fully determine the types of commonality in the process. Next we illustrate
the duality result in (14); first we compute

kω(z) := det Πω(z) = −1
3
(2z − 3), kψ(z) := det Πψ(z) = −1

6
(z3 − 2z2 + 2z − 6)

and

K`(z) := adj Π`(z) =

(
1 0
0 1

)
+

1
3

(
−5 + 1`,ψ −4

6 3

)
z − 1

2

(
1
−1

)
(1 : −1) z2,

so that using dkω = 1, dkψ = 3, dK` = 2, and (7) one immediately gets mω
0 = 3, mψ

0 = 1. The
polynomial rank factorization of Kω

‡ (z) at 0 gives ξω
0 = (1 : −1)′, ηω

0 = 1
2(1 : −1)′, ξω

1 = ξω
2 =

ηω
1 = ηω

2 = (0 : 0)′ and ξω
3 = (1 : 1)′, ηω

3 = −1
3(1 : 1)′. Hence ξω

0 = −2
3 β̄ω

3 , ηω
0 = ᾱω

3 , ξω
3 = β̄ω

0 and
ηω
3 = −2

3 ᾱω
0 and similar results holds for ` = ψ and for the other roots, see the comment on the

presence of a factor structure in the adjoint in Cubadda, Hecq, and Palm (2009), Section 2.4.

7. Conclusion

The present paper characterizes the restrictions on the VAR coefficients that correspond 1-to-1
to the presence of common dynamic features of the CS, CD and CD type. These characterizations
are associated with the polynomial rank factorizationof the reversed AR polynomial around its
characteristic roots. The given characterizations equally apply to stationary VAR and VARs with
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I(1) and I(2) variables. These conditions extend and complement the ones that are already available
in the literature.

The approach adopted is an algebraic one, based on properties of a matrix polynomial and its
adjoint and determinant. The duality results employed here may have a separate interest for other
contexts where the inversion of matrix polynomials have application.
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Appendix A. Proofs

Proof of Lemma 2.1. Because det Π(zu) = 0 one has 0 ≤ rankΠ(zu) ≤ p−1; when 0 ≤ rankΠ(zu) <

p−1 one has adj Π(zu) = 0 and thus each entry of adj Π(z) contains the factor (1−z/zu)bu for some
0 < bu < au; if rank Π(zu) = p− 1 then adjΠ(zu) 6= 0 and thus bu = 0. If Im zu 6= 0 then the same
applies to z∗u. Let g(z) :=

∏q
u=1(1− z/zu)mu =: (1− z/zu)mugu(z); because inv Π(z) := adjΠ(z)

detΠ(z) and
G(zu), gu(zu) 6= 0 one has the last statement. This completes the proof. ¤

Proof of Theorem 3.1. Consider a characteristic root zu; because Π‡(1/z) = z−dΠΠ(z) and Π(zu) is
singular, then z = wu := 1/zu is a point of rank-deficiency for Π‡(z), i.e. wu is a root of det Π‡(z).
Because the same holds for any characteristic root, one then finds the factor

∏q
u=1 (z − wu)au ,

au > 0, in det Π‡(z). Moreover, we observe that lim|z|→∞ z−dΠΠ(z) = ΠdΠ
= Π‡(0); hence if

ΠdΠ
is singular then 0 is the point of rank-deficiency for Π‡(z) which corresponds to the point of

rank-deficiency at ∞ for Π(z). This shows that

detΠ‡(z) = za0k‡(z), k‡(0) 6= 0,

where a0 > 0 and
adjΠ‡(z) = zb0K‡(z), K‡(0) 6= 0,

where 0 ≤ b0 < a0. This implies inv Π‡(z) = z−c0 G‡(z)
g‡(z) , z ∈ C\{w0, . . . , wq}, where G‡(0), g‡(0) 6= 0

and c0 := a0−b0 > 0. Next we wish to show that c0 = m0. By the definition of the † and ‡ operators
one has inv Π†(z) = zdΠ inv Π‡(z); hence, substituting for inv Π‡(z) one finds

(16) inv Π†(z) = zdΠ−c0
G‡(z)
g‡(z)

, z ∈ C \ {w0, . . . , wq} ,

and because inv Π(z) = G(z)
g(z) , one also has

(17) inv Π†(z) =
G†(z)
g†(z)

= zdg−dG
G‡(z)
g‡(z)

, z ∈ C \ {w0, . . . , wq} .

Equating (16) and (17) one finds dΠ − c0 = dg − dG, i.e. c0 = dΠ + dG − dg =: m0. This completes
the proof. ¤

Proof of Theorem 3.2. The identity Π(z)G(z) = G(z)Π(z) = g(z)I implies Π‡(z)G‡(z) = G‡(z)Π‡(z) =
zm0g‡(z)I so that

(18) det ΠdΠ
= 0 ⇔ detGdG

= 0 ⇔ m0 > 0

where ΠdΠ
, GdG

6= 0.
i.1) ⇔ i.2). See Theorem 3.1.
i.2) ⇒ i.3). If m0 > 0 then, see (18), there exists γ0 6= 0 such that γ′0Π(z) = γ′(z) where

0 ≤ dγ ≤ dΠ− 1. Post-multiplying by G(z) one finds g(z)γ′0 = γ′(z)G(z); comparing degrees of the
l.h.s. and the r.h.s. one has dg ≤ dγ + dG, i.e. dγ ≥ dg − dG = dΠ −m0.

i.3) ⇒ i.4). If det ΠdΠ
= 0 then, see (18), detGdG

= 0 and there exists γ0 6= 0 such that
γ′0G(z) = γ′(z) where 0 ≤ dγ ≤ dG − 1. Post-multiplying by Π(z) one finds g(z)γ′0 = γ′(z)Π(z);
comparing degrees of the l.h.s. and the r.h.s. one has dg ≤ dγ + dΠ, i.e. dγ ≥ dg − dΠ = dG −m0.

i.4) ⇒ i.1). If detGdG
= 0 then detΠdΠ

= 0, see (18).
ii) By definition, Xt ∈ CD(dγ) if and only if γ′0C(z) = γ′(z), i.e. γ′0G(z) = g(z)γ′(z). Comparing

degrees of the l.h.s. and the r.h.s. one has dG ≥ dg +dγ which implies dG−dg = m0−dΠ ≥ dγ ≥ 0.
iii) m0 > 0 does not imply m0 ≥ dΠ. This completes the proof. ¤

In Lemma A.1 below we present a result that will be used in the proof of Theorem 4.2.
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Lemma A.1 (Π-Cancellations). Let the ‡ operator be as in (6), w0 := 0 and wu := 1/zu, u =
1, . . . , q, define Π‡(z) =

∑dΠ
n=0 Π(u)

n (z−wu)n and let au,j, bu,j and Π(u)
j,k be as in Definition 4.1; then

for 0 ≤ n ≤ mu − 1, the following statements are equivalent:

i) v′uΠ‡(z) = (z − wu)n+1ζ ′u(z) and ζu(wu) has full column rank;
ii) v′u(Π(u)

0,1 : · · · : Π(u)
n,1) = 0 and v′uΠ(u)

n+1,1 has full row rank;
iii) vu = au,n+1⊥ϕu where

iii.1) ϕ′ua′u,n+1⊥(Π(u)
1,1bu,1 : · · · : Π(u)

n,1bu,n) = 0 and ϕ′ua′u,n+1⊥Π(u)
n+1,1 has full row rank;

iii.2) ϕ′ua′u,n+1⊥(Π(n)
1 bu,1 : · · · : Π(u)

n bu,n) = 0 and ϕ′ua′u,n+1⊥Π(u)
n+1 has full row rank.

Proof. First we observe that i) holds if and only if v′u(Π(u)
0 : · · · : Π(u)

n ) = 0 and v′uΠ(u)
n+1 has full row

rank. Next we write Π(u)
j,k in (11) as Π(u)

j,k := Π(u)
j−1,k+1 + Π(u)

j−1,1bu,j−1(×) where (×) depends on j, k

and we recall that Π(u)
0,k := Π(u)

k−1, Π(u)
1,k = Π(u)

k .

i) ⇔ ii). We proceed by induction, assuming that v′uΠ(u)
j = 0 implies v′uΠ(u)

j,1 = 0 for j =

0, . . . , `− 1 and proving it for j = `, where 1 ≤ ` ≤ n. Hence v′uΠ(u)
1,k = 0 for k = 0, . . . , `− 1 holds

by the induction assumption and one has v′uΠ(u)
2,k = v′uΠ(u)

1,k+1 = 0 for k = 1, . . . , `− 2. By successive

applications of the same argument one finds v′uΠ(u)
j,k = 0 for k = 1, . . . , `− j; next consider (11) for

j = `, k = 1 and note that
(19)
v′uΠ(u)

`,1 = v′uΠ(u)
`−1,2 + v′uΠ(u)

`−1,1︸ ︷︷ ︸
=0

bu,`−1(×) = v′uΠ(u)
`−2,3 + v′uΠ(u)

`−2,1︸ ︷︷ ︸
=0

bu,`−2(×) = · · · = v′uΠ(u)
1,` = v′uΠ(u)

`

by the induction assumption; hence v′uΠ(u)
` = 0 implies v′uΠ(u)

`,1 = 0 and this completes the proof

by induction. Because v′uΠ(u)
n+1,1 = v′uΠ(u)

n+1 one has v′uΠ(u)
n+1 of full row rank if and only if v′uΠ(u)

n+1,1

has full row rank. This completes the proof of sufficiency. Next assume that v′uΠ(u)
j,1 = 0 implies

v′uΠ(u)
j = 0 for j = 0, . . . , `− 1 and use (19) to complete the induction. This completes the proof.

ii) ⇔ iii.1). If v′uΠ(u)
j,1 = 0 for 0 ≤ j ≤ n, then v′uΠ(u)

j,1 Pbu,j = 0 and v′uΠ(u)
j,1 Mbu,j = 0; from

v′uΠ(u)
j,1 Mbu,j = 0 one has vu = au,n+1⊥ϕu for some ϕu 6= 0 because vu = au,n+1ξ for some ξ 6= 0

contradicts v′u(Π(u)
0,1 : · · · : Π(u)

n,1) = 0, see (13). Combining v′uΠ(u)
j,1 Pbu,j = 0 and vu = au,n+1⊥ϕu one

finds ϕ′ua′u,n+1⊥Π(u)
j,1 bu,j = 0 for 0 ≤ j ≤ n. This completes the proof of sufficiency. Next assume

vu = au,n+1⊥ϕu where ϕ′ua′u,n+1⊥(Π(u)
0,1 : · · · : Π(u)

n,1bu,n) = 0 and ϕ′ua′u,n+1⊥Π(u)
n+1,1 has full row

rank; then v′uΠ(u)
j,1 = ϕ′ua′u,n+1⊥Π(u)

j,1 Pbu,j + ϕ′ua′u,n+1⊥Π(u)
j,1 Mbu,j = ϕ′ua′u,n+1⊥Π(u)

j,1 Pbu,j for 0 ≤ j ≤ n

because a′u,n+1⊥Mau,j+1 = a′u,n+1⊥ and (13). Because ϕ′ua′u,n+1⊥(Π(u)
0,1 : · · · : Π(u)

n,1bu,n) = 0 one then

has ϕ′ua′u,n+1⊥Π(u)
j,1 Pbu,j = 0 for 0 ≤ j ≤ n. Hence v′uΠ(u)

j,1 = 0 for 0 ≤ j ≤ n and v′uΠ(u)
n+1,1 of full

row rank. This completes the proof.
iii.1) ⇔ iii.2). We proceed by induction, assuming that v′uΠ(u)

j,1 bu,j = 0 implies v′uΠ(u)
j bu,j = 0

for j = 0, . . . , `− 1 and proving it for j = `, where 1 ≤ ` ≤ n. Consider (11) for j = `, k = 1 and
note that
(20)

v′uΠ(u)
`,1 = v′uΠ(u)

`−1,2 + v′uΠ(u)
`−1,1bu,`−1︸ ︷︷ ︸

=0

(×) = v′uΠ(u)
`−2,3 + v′uΠ(u)

`−2,1bu,`−2︸ ︷︷ ︸
=0

(×) = · · · = v′uΠ(u)
1,` = v′uΠ(u)

`

by the induction assumption; hence v′uΠ(u)
`,1 bu,` = 0 implies v′uΠ(u)

` bu,` = 0 and this completes the

proof of sufficiency. Next assume that v′uΠ(u)
j bu,j = 0 implies v′uΠ(u)

j,1 bu,j = 0 for j = 0, . . . , `−1 and
use (20) to complete the induction. This completes the proof. ¤
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Proof of Theorem 4.2. One has Xt ∈ CS(dγ) if and only if γ′0Π(z) = γ′(z), z ∈ C, where max(0, dΠ−
m0) ≤ dγ ≤ dΠ − 1 and γ(z) has full column rank. We map z into z−1 and write the last equation
as

γ′0Π‡(z) = zdΠ−dγζ ′0(z), z ∈ C,

where ζ0(z) := γ‡(z). This fits the assumptions of Lemma A.1 with u := 0, v0 := γ0 and n :=
dΠ − dγ − 1. Note that v0 ∈ Rp×r, where r =

∑m0
j=dΠ−dγ

r0,j . This completes the proof. ¤

For the proofs of Theorem 4.3, 4.4 we apply the results of Corollary A.2 A.6; the former is a
consequence of Lemma A.1 and the duality result in (14), the latter of Lemma A.3, A.4 and A.5
below.

Corollary A.2 (G-Cancellations). Let the ‡ operator be as in (6), w0 := 0 and wu := 1/zu,
u = 1, . . . , q, define G‡(z) =

∑dG
n=0 G

(u)
n (z −wu)n and let au,j, bu,j be as in Definition 4.1; then for

0 ≤ n ≤ mu − 1, the following statements are equivalent:

i) v′uG‡(z) = (z − wu)n+1ζ ′u(z) and ζu(wu) has full column rank;
ii) vu = bu,mu−nϕu where ϕ′ub′u,mu−n(G(u)

1 au,mu⊥ : · · · : G
(u)
n au,mu−n+1⊥) = 0 and ϕ′ub′u,mu−nG

(u)
n+1

has full row rank.

Proof. Replace Π with G in the proof of Lemma A.1 and use the duality result in (14). This
completes the proof. ¤

Lemma A.3. Let αu,j, βu,j, Π(u)
j,k and ξu,j, ηu,j, G

(u)
j,k be respectively defined by the polynomial rank

factorizations of Π‡(z) and G‡(z) =
∑dG

n=0 G
(u)
n (z−wu)n at z = wu, g‡(z) =: (z−wu)mug‡,u(z) and

hu := g‡,u(wu) 6= 0; then for 0 ≤ j ≤ n ≤ mu, one has

(21) β′u,jG
(u)
n−j = ᾱ′u,j

n−j∑

k=1

Π(u)
j+1,kG

(u)
n−j−k − 1n,muhuᾱ′u,j ,

where 1n,mu is the indicator function. Moreover, for 0 ≤ j ≤ s− 1 ≤ n− 1 ≤ mu − 1, one has

(22) β′u,jG
(u)
t,s−jαu,mu−t = ᾱ′u,j

s−j−1∑

k=1

Π(u)
j+1,kG

(u)
t,s−j−kαu,mu−t − 1t+s−1,muhuᾱ′u,jαu,mu−t,

Proof. See Franchi and Paruolo (2009). ¤

Lemma A.4. For t = 1, . . . , n ≤ mu − 1, one has

(23) v′uG
(u)
t αu,mu−t+1 = 0 ⇔

mu−n−1∑

j=0

ϕ′u,jᾱ
′
u,jΠ

(u)
j+1,1βu,mu−t+1 = 0.

Proof. First we show that (23) holds for t = 1; let n ≤ mu − 1, n− j = 1 in (21) to get

(24) β′u,jG
(u)
1 = ᾱ′u,jΠ

(u)
j+1,1G

(u)
0 ;

substitute for G
(u)
0 = −huβ̄u,muᾱ′u,mu

, see (14), pre and post-multiply by ϕ′u,j and αu,mu respectively

to find ϕ′u,jβ
′
u,jG

(u)
1 αu,mu = −huϕ′u,jᾱ

′
u,jΠ

(u)
j+1,1β̄u,mu ; hence (23) holds for t = 1, because vu =

bu,mu−nϕu =
∑mu−n−1

j=0 βu,jϕu,j . Next we proceed by induction, assuming that (23) holds for
t = 1, . . . , `− 1 and proving it for t = `, where 1 ≤ ` ≤ n. For s− j = 1, (22) gives

(25) β′u,jG
(u)
t,1 αu,mu−t = −1t+j,muhuᾱ′u,jαu,mu−t

and for n ≤ mu − 1, s− j = 2 it gives

(26) β′u,jG
(u)
t,2 αu,mu−t = ᾱ′u,jΠ

(u)
j+1,1G

(u)
t,1 αu,mu−t.
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Because G
(u)
t,1 αu,mu−t =

∑mu
j=0 β̄u,jβ

′
u,jG

(u)
t,1 αu,mu−t =

(27) −huβ̄u,mu−t +
mu∑

j=mu−t+1

β̄u,jβ
′
u,jG

(u)
t,1 αu,mu−t

follows from (25), (26) is then rewritten as

β′u,jG
(u)
t,2 αu,mu−t = −huᾱ′u,jΠ

(u)
j+1,1β̄u,mu−t + ᾱ′u,jΠ

(u)
j+1,1bu,mu−t+1⊥(×)

where (×) depends on j, t. This implies

(28) v′uG
(u)
t,2 αu,mu−t = −hu

mu−n−1∑

j=0

ϕ′u,jᾱ
′
u,jΠ

(u)
j+1,1β̄u,mu−t +

mu−n−1∑

j=0

ϕ′u,jᾱ
′
u,jΠ

(u)
j+1,1bu,mu−t+1⊥(×)

From the counterpart of (20) for G
(u)
·,· and the duality result in (14) one has v′uG

(u)
t,2 = v′uG

(u)
t+1; more-

over, the induction assumption implies
∑mu−n−1

j=0 ϕ′u,jᾱ
′
u,jΠ

(u)
j+1,1βu,mu−t+1 = 0 for t = 1, . . . , ` − 1

so that
∑mu−n−1

j=0 ϕ′u,jᾱ
′
u,jΠ

(u)
j+1,1bu,mu−`+2⊥ = 0. Hence for t = `− 1, (28) gives

v′uG
(u)
` αu,mu−`+1 = −hu

mu−n−1∑

j=0

ϕ′u,jᾱ
′
u,jΠ

(u)
j+1,1β̄u,mu−`+1,

i.e. (23) for t = `. This completes the proof. ¤

Lemma A.5. Let Π(u)
s,j,k be as in Definition 4.1 and assume

mu−n−1∑

j=0

ϕ′u,jᾱ
′
u,jΠ

(u)
s,j+1,1bu,mu−t+1⊥ = 0;

then for t = 1, . . . , n ≤ mu − 1, one has

v′uG
(u)
t,s+1αu,mu−t = −hu

mu−n−1∑

j=0

ϕ′u,jᾱ
′
u,jΠ

(u)
s,j+1,1β̄u,mu−t.

Proof. Assume that for ` = 1, . . . , κ, one has

(29) v′uG
(u)
t,κ+1αu,mu−t =

mu−n−1∑

j=0

ϕ′u,jᾱ
′
u,j

κ−`+1∑

k=1

Π(u)
`,j+1,kG

(u)
t,κ+2−`−kαu,mu−t;

then for ` = κ, one has

v′uG
(u)
t,κ+1αu,mu−t =

mu−n−1∑

j=0

ϕ′u,jᾱ
′
u,jΠ

(u)
κ,j+1,1G

(u)
t,1 αu,mu−t.

Because G
(u)
t,1 αu,mu−t = −huβ̄u,mu−t + bu,mu−t+1⊥b̄′u,mu−t+1⊥G

(u)
t,1 αu,mu−t, see (27), one then has

v′uG
(u)
t,κ+1αu,mu−t =

−hu

mu−n−1∑

j=0

ϕ′u,jᾱ
′
u,jΠ

(u)
κ,j+1,1β̄u,mu−t +

mu−n−1∑

j=0

ϕ′u,jᾱ
′
u,jΠ

(u)
κ,j+1,1bu,mu−t+1⊥b̄′u,mu−t+1⊥G

(u)
t,1 αu,mu−t.

Hence
∑mu−n−1

j=0 ϕ′u,jᾱ
′
u,jΠ

(u)
κ,j+1,1bu,mu−t+1⊥ = 0 implies

v′uG
(u)
t,κ+1αu,mu−t = −hu

mu−n−1∑

j=0

ϕ′u,jᾱ
′
u,jΠ

(u)
κ,j+1,1β̄u,mu−t.
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Next we show that (29) holds. Let t + s− 1 ≤ mu − 1, s− j = κ + 1 in (22), pre-multiply by ϕ′u,j

and sum over j to get

v′uG
(u)
t,κ+1αu,mu−t =

mu−n−1∑

j=0

ϕ′u,jᾱ
′
u,j

κ∑

k=1

Π(u)
j+1,kG

(u)
t,κ+1−kαu,mu−t;

this shows (29) for ` = 1 because Π(u)
1,j,k := Π(u,j,k. Next we proceed by induction assuming (29) for

` = 1, . . . , τ and showing it for ` = τ + 1 ≤ κ. For ` = τ , (29) is rewritten as

v′uG
(u)
t,κ+1αu,mu−t =

mu−n−1∑

j=0

ϕ′u,jᾱ
′
u,jΠ

(u)
τ,j+1,1G

(u)
t,κ+1−ταu,mu−t+

mu−n−1∑

j=0

ϕ′u,jᾱ
′
u,j

κ−τ∑

k=1

Π(u)
τ,j+1,k+1G

(u)
t,κ+1−τ−kαu,mu−t =: A + B (say);

next insert I =
∑mu

h=0 β̄u,hβ′u,h between Π(u)
τ,j+1,1 and G

(u)
t,κ+1−τ to find

A =
mu−n−1∑

j=0

ϕ′u,jᾱ
′
u,jΠ

(u)
τ,j+1,1

mu∑

h=0

β̄u,hβ′u,hG
(u)
t,κ+1−ταu,mu−t =

mu−n−1∑

j=0

ϕ′u,jᾱ
′
u,jΠ

(u)
τ,j+1,1

mu−t∑

h=0

β̄u,hβ′u,hG
(u)
t,κ+1−ταu,mu−t,

where the second equality follows from
∑mu−n−1

j=0 ϕ′u,jᾱ
′
u,jΠ

(u)
τ,j+1,1bu,mu−t+1⊥ = 0. Next let t+s−1 ≤

mu − 1, s− j = κ + 1− τ in (22) to get

β′u,jG
(u)
t,κ+1−ταu,mu−t = ᾱ′u,j

κ−τ∑

k=1

Π(u)
j+1,kG

(u)
t,κ+1−τ−kαu,mu−t,

so that

A =
mu−n−1∑

j=0

ϕ′u,jᾱ
′
u,j

κ−τ∑

k=1

(
Π(u)

τ,j+1,1

mu−t∑

h=0

β̄u,hᾱ′u,hΠ(u)
h+1,k

)
G

(u)
t,κ+1−τ−kαu,mu−t.

Hence A + B =

v′uG
(u)
t,κ+1αu,mu−t =

mu−n−1∑

j=0

ϕ′u,jᾱ
′
u,j

κ−τ∑

k=1

Π(u)
τ+1,j+1,kG

(u)
t,κ+1−τ−kαu,mu−t,

where

Π(u)
τ+1,j+1,k := Π(u)

τ,j+1,k+1 + Π(u)
τ,j+1,1

mu−t∑

h=0

β̄u,hᾱ′u,hΠ(u)
1,h+1,k,

see (12); hence (29) holds for ` = τ + 1. This completes the proof. ¤

Corollary A.6. Let Π(u)
s,j,k be as in Definition 4.1 and vu := bu,mu−nϕu; then for 1 ≤ s ≤ n ≤

mu − 1, one has

(30) v′u(G(u)
1 au,mu⊥ : · · · : G(u)

n au,mu−n+1⊥) = 0 ⇔
mu−n−1∑

j=0

ϕ′u,jᾱ
′
u,jΠ

(u)
s,j+1,1bu,mu−n+s = 0.

Moreover,

(31) v′uG
(u)
n+1 = −ϕ′u,mu−n−1β

′
u,mu−n−1βu,mu−n−1α

′
u,mu−n−1 −Huā′u,mu−n⊥,

with Hu := hu
∑mu−n−1

j=0 ϕ′u,jᾱ
′
u,j(Π

(u)
1,j+1,1βu,mu−n : · · · : Π(u)

n+1,j+1,1βu,mu).
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Proof. The counterpart of (20) for G
(u)
·,· and the duality result in (14) imply v′uG

(u)
t,s+1 = v′uG

(u)
t+s;

then, see Lemma A.5, for 1 ≤ s ≤ t ≤ n ≤ mu − 1, one has

(32) v′uG
(u)
t αu,mu−t+s = −hu

mu−n−1∑

j=0

ϕ′u,jᾱ
′
u,jΠ

(u)
s,j+1,1βu,mu−t+s.

Write v′u(G(u)
1 au,mu⊥ : · · · : G

(u)
n au,mu−n+1⊥) = 0, where vu := bu,mu−nϕu, as v′uG

(u)
t αu,mu−t+s = 0,

for 1 ≤ s ≤ t ≤ n ≤ mu − 1. This proves (30). Next write v′uG
(u)
n+1 = v′uG

(u)
n+1Pau,mu−n +

v′uG
(u)
n+1Mau,mu−n =: A + B (say). The duality result in (14) together with the counterpart of (13)

for G imply

A = −ϕ′u,mu−n−1β
′
u,mu−n−1βu,mu−n−1α

′
u,mu−n−1

and using (32) one finds

B = −hu

mu−n−1∑

j=0

ϕ′u,jᾱ
′
u,j(Π

(u)
1,j+1,1βu,mu−n : · · · : Π(u)

n+1,j+1,1βu,mu)ā′u,mu−n⊥.

This completes the proof. ¤

Proof of Theorem 4.3. One has Xt ∈ CE(dγ) if and only if γ′0G(z) = γ′(z), z ∈ C, where max(0, dG−
m0) ≤ dγ ≤ dΠ − 1 and γ(z) has full column rank. We map z into z−1 and write the last equation
as

γ′0G‡(z) = zdG−dγζ ′0(z), z ∈ C,

where ζ0(z) := γ‡(z). This fits the assumptions of Corollary A.2 with u := 0, v0 := γ0 and
n := dG − dγ − 1. Note that v0 ∈ Rp×r, where r =

∑m0−dG+dγ

j=0 r0,j . This proves i)− iv.1); in order
to prove iv.2) apply Corollary A.6 for n := dG − dγ − 1. This completes the proof. ¤

In Lemma A.8, A.9, below we present results that will be used in the proof of Theorem of 4.4.
Before that, Lemma A.7 below states that the left null space of a pair of complex conjugate matrices
contains real vectors.

Lemma A.7 (Real left null space). Let A ∈ Cp×p; then v′A = v′A∗ = 0 for some v ∈ Cp if and only
if (Re v)′(Re A : ImA) = (Im v)′(ReA : Im A) = 0. One can choose to represent the intersection
of the left null spaces of colA and colA∗, i.e. V := {v ∈ Cp : v′A = v′A∗ = 0} with the real left
null space of col(ReA : Im A), namely U := {u ∈ Rp : u′(Re A : Im A) = 0}, in the sense that
U = V ∩ Rp and V = U + iU (or V = U ⊕ iU).

Proof. Because v′A = v′A∗ = 0 one has 0 = v′ 12(A+A∗) = v′ReA and 0 = v′ i2(−A+A∗) = v′ ImA;
this implies Re v′(Re A : ImA) = Im v′(ReA : Im A) = 0. Reading these implications in reverse
order one obtains the reverse implications. The relation V = U+iU readily follows. This completes
the proof. ¤

The next result is an extension of the expansion formula of Johansen (1931).

Lemma A.8. Let f(z), z ∈ C, be holomorphic for z ∈ U ⊆ C, and consider n distinct points
z1, . . . , zn in U ; then one has

f(z) = b(z) + v(z),
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where b(z) is a polynomial such that for s = 0, . . . , `u − 1 ≥ 0 and u = 1, . . . , n, one has b(s)(zu) =
f (s)(zu) and v(z) is a remainder. In particular,

v(z) := a(z)r(z), a(z) :=
n∏

u=1

(z − zu)`u ,

b(z) :=
n∑

u=1

au(z)bu(z), au(z) :=
a(z)

(z − zu)`u
,

bu(z) :=
`u−1∑

s=0

bu,s(z − zu)s, bu,s :=
g
(s)
u (zu)

s!
, gu(z) :=

f(z)
au(z)

.

The degrees of a(z) and b(z) are respectively da =
∑n

u=1 `u and db = da − 1. Finally 1/a(z) and
r(z) are co-prime.

Proof. See Franchi and Paruolo (2009). ¤

We apply Lemma A.8 letting f(z) := G‡(z), a(z) := zhg‡(z); this gives

(33) G‡(z) = D(z) + zhg‡(z)S(z), D(z) :=
q∑

u=0

au(z)Du(z).

Lemma A.9 (C-Cancellations). Let the ‡ operator be as in (6), w0 := 0 and wu := 1/zu, u =
1, . . . , q, define G‡(z) =

∑dG
n=0 G

(u)
n (z − wu)n, and let au,j, bu,j and Π(u)

s,j,k be as in Definition 4.1;
then for 0 ≤ h ≤ m0 − dΠ, the following statements are equivalent:

i) v′G‡(z) = zhg‡(z)ζ ′(z), where ζ ′(z) := v′S(z);
ii) v′(G(u)

0 : · · · : G
(u)
`u−1) = 0, where u = 0, . . . , q, `0 := h and `u := mu, u 6= 0;

iii) let ` := m0 − h + 1; then

col v = ∩q
u=0 col vu ∈ Rp×r,

where v0 = b0,`ϕ0, vu = βu,0ϕu, u 6= 0,
iii.1) and where ϕ′0b

′
0,`(G

(0)
1 a0,m0⊥ : · · · : G

(0)
h−1a0,`+1⊥) = 0 and ϕ′0b

′
0,`G

(0)
h of full row rank

and for u 6= 0, ϕ′uβ′u,0(G
(u)
1 au,mu⊥ : · · · : G

(u)
mu−1au,2⊥) = 0 and ϕ′uβ′u,0G

(u)
mu of full row

rank.
iii.2) and where

∑m0−h
j=0 ϕ′0,jᾱ

′
0,j(Π

(0)
1,j+1,1b0,m0−h+2 : · · · : Π(0)

h−1,j+1,1b0,m0) = 0 and

−ϕ′0,m0−hβ′0,m0−hβ0,m0−hα′0,m0−h −H0ā
′
0,m0−h+1⊥,

with H0 := h0
∑m0−h

j=0 ϕ′0,jᾱ
′
0,j(Π

(0)
1,j+1,1β0,m0−h+1 : · · · : Π(0)

h,j+1,1β0,m0), has full row

rank and for u 6= 0, ϕ′u,0ᾱ
′
u,0(Π

(u)
1,1,1bu,2 : · · · : Π(u)

mu−1,1,1bu,mu) = 0 and

−ϕ′u,0β
′
u,0βu,0α

′
u,0 −Huā′u,1⊥,

with Hu := huϕ′u,0ᾱ
′
u,0(Π

(u)
1,1,1βu,1 : · · · : Π(u)

mu,1,1βu,mu), has full row rank.

Proof. i) ⇔ ii) Pre-multiplying both sides of (33) by v′ one has v′G‡(z) = zhg‡(z)ζ ′(z), where
ζ ′(z) := v′S(z), if and only if v′D(z) = 0; next we show that

(34) v′D(z) = 0 ⇔ v′Du(z) = 0, u = 0, . . . , q.

The proof of (⇐) is immediate; to see that (⇒) also holds, assume there exists j such that v′Dj(z) 6=
0 and v′D(z) = 0. Then

v′aj(z)Dj(z) = −v′
q∑

u=0,u 6=j

au(z)Du(z),
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where v′aj(zj)Dj(zj) 6= 0 and au(zj)Du(zj) = 0 for u 6= j. Hence we reach a contradiction and
conclude that there cannot be such j. This completes the proof of (34). Next we observe that
because Du(z) =

∑`u−1
n=0 Du,n(z − wu)n one has

v′Du(z) = 0 ⇔ v′Du,n = 0, n = 0, . . . , `u − 1,

and further we note that Du,n =
∑n

j=0 bu,jG
(u)
n−j , where bu,j is a scalar. Hence one has

v′Du,n = 0, n = 0, . . . , `u − 1 ⇔ v′(G(u)
0 : · · · : G

(u)
`u−1) = 0.

This completes the proof.
ii) ⇔ iii.1) The result is found by applying Corollary A.2 at wu, u = 0, . . . , q, letting n := `u−1,

where `0 := h and `u := mu, u 6= 0; this gives v′u(G(u)
0 : · · · : G

(u)
`u−1) = 0 and v′uG

(u)
`u

of full row rank
if and only if

(35) vu = bu,mu−`u+1ϕu where ϕ′ub′u,mu−`u+1(G
(u)
1 au,mu⊥ : · · · : G

(u)
`u−1au,mu−`u+2⊥) = 0

and ϕ′ub′u,mu−nG
(u)
`u

of full row rank. Because v must satisfy (35) for u = 0, . . . , q then it must be
a basis of ∩q

u=0 col vu. Conversely, if v is basis of ∩q
u=0 col vu, then it satisfies (35) for u = 0, . . . , q.

Because v belongs to the left null space of pairs of complex conjugate matrices, Lemma A.7 applies
and one can choose v ∈ Rp. This completes the proof.

iii.1) ⇔ iii.2) The result is found by applying Corollary A.6 at wu, u = 0, . . . , q, letting n :=
`u − 1, where `0 := h and `u := mu, u 6= 0. This completes the proof. ¤

Proof of Theorem 4.4. One has Xt ∈ CD(dγ) if and only if γ′0
G(z)
g(z) = γ′(z), z ∈ C, where 0 ≤ dγ ≤

m0 − dΠ has full column rank. We map z into z−1 and write the last equation as

γ′0
G‡(z)

zm0−dΠ−dγg‡(z)
= ζ ′(z), z ∈ C,

where ζ(z) := γ′‡(z). This fits the assumptions of Lemma A.9 with v := γ0 and h := m0 − dΠ − dγ .
This completes the proof. ¤

In order to find the Laurent series representation of inv Π(z), see (37) below, we apply Lemma
A.8 to f(z) := G(z) and a(z) :=

∏q
u=1(z − zu)mu = cρg(z), where cρ :=

∏q
u=1(−zu)−mu ; this gives

(36) G(z) = B̃(z) + a(z)R̃(z), B̃(z) :=
q∑

u=1

au(z)B̃u(z),

where the matrix polynomials B̃(z) := b(z), R̃(z) := r(z) have degrees d
B̃

=
∑q

u=1 mu − 1,
d

R̃
= dG − dg respectively. Dividing both sides of (36) by g(z), one has

(37) inv Π(z) =
q∑

u=1

Bu(z)
(1− wuz)mu

+ R(z), z ∈ C \ {z1, . . . , zq} ,

where Bu(z) := (−zu)mucρB̃u(z) and R(z) := cρR̃(z).

Proof of Lemma 5.1. Let B = (β0 : β1)′, D(z) := diag(Ir, (1 − z)Ip−r) and Xt := D(z)BYt and
pre-multiply (15) by B to obtain Ã(L)BYt = But where Ã(z) := BA(z)B−1 with B−1 = (β̄ : β̄1)

Ã(z) =

(
β′0Γ(z)β̄(1− z)− β′0αz β′Γ(z)β̄1

β′1Γ(z)β̄(1− z)− β′1αz β′1Γ(z)β̄1

) (
Ir 0
0 (1− z)Ip−r

)
=: Π(z)D(z)

This shows that Π(L)Xt = εt. One sees that the last p − r columns of Π(z) have degree dΓ =
dΠ − 1, which implies ΠdΠ

= (ΠdΠ,0 : 0p×(p−r)). By properties of the determinant one sees that
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det Ã(z) = det Π(z) det D(z), so that the roots of det Ã(z) = detB detA(z) detB−1 = detA(z)
include the roots of detΠ(z) plus the roots of detD(z), which are p− r roots at z = 1. ¤
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