COLLECTIVE MORAL HAZARD, MATURITY MISMATCH AND SYSTEMIC BAILOUTS

November 12th, 2009

Emmanuel Farhi (Harvard) and Jean Tirole (TSE)

INTRODUCTION

- Two facts:
 - Overall macroeconomic fragility (sensitivity to macro shocks):
 - wide-scale maturity mismatch
 - economywide exposure to refinancing risk
 - Output: Unprecedented bailouts (monetary, fiscal)
- This paper:
 - these two facts are related: leverage and the central banker's put
 - amplification mechanism: why crises are bad
 - implications for regulation

(1): Overall macroeconomic fragility

Leverage, refinancing risk

- Suprime borrowers:
 - monthly repayment for ARMs
 - ability to refinance
- Levered mortgage lenders financed on wholesale market
- Commercial banks have pledged substantial liquidity support to conduits (financed in short-term ABCP market)
- Investment banks have gained market share [investment banks rely on Repo and CP funding much more than commercial banks]
- Primary dealers' ratio of overnight to term borrowing has grown
- Others: LBOs, Money-market mutual funds

(2): Unprecedented interventions

- Example: Fed's balance sheet has tripled since 2007
- Interventions (bailouts)
 - monetary policy (interest rate policy)[nominal interest rate close to 0]
 - other
 - direct support to institutions [recapitalizations, purchase of CP, underpriced deposit insurance, debt guarantees]
 - support to asset prices [as planned in TARP I and II, Gheitner plan]

Key insight

- Time-inconsistency of policy
- Policy instruments imperfectly targeted [focus on interest rate policy in talk, see paper for optimal intervention]
- Private leverage / liquidity choices depend on anticipated policy reaction

balance-sheet-risk choices are strategic complements.

- When everybody engages in maturity transformation
 - ex-post optimal for authorities to intervene
 - ex-ante optimal to adopt risky balance sheet

"As long as the music is playing, you have to get up and dance" Charles Prince, CEO Citigroup, summer 2007

Related lit

- Time-inconsistency: Kydland-Prescott (1977), Barro-Gordon (1983)
- Liquidity: Woodford (1990), Holmström-Tirole (1998)
- Moral hazard problems with one bank: Bagehot (1873), Dewatripont-Tirole (1994), Mailath-Mestler (1994) and Freixas (1999)
- Strategic complementarities in macro: Diamond (1982), Cooper-John (1988), Morris-Shin (1998), Schneider-Tornell (2004), Ranciere-Tornell-Westermann (2008), Acharya-Yorulmazer (2007, 2008), Brown, Craig and Serdar Dinc (2009)
- More recent: Kahsyap-Rajan-Stein (2008), Diamond-Rajan (2009), Philippon-Schnabl (2009), Lorenzoni (2008), Korinek (2009)

I. MODEL

- Three periods: t = 0, 1, 2
- Two groups of mass 1: banking entrepreneurs and consumers
- Consumers:
 - preferences: $V = c_0 + u(c_1) + c_2$ with $c_0, c_1, c_2 \ge 0$
 - large endowments et
 - cannot pledge their future income
- Two storage technologies:
 - $\bullet~$ long-term: 1 at date 0 \rightarrow 1 at date 2
 - $\bullet\,$ short term: 1 at date 1 \rightarrow 1 at date 2

- Banking entrepreneurs:
 - preferences: $U = c_0 + c_1 + c_2$ with $c_0, c_1, c_2 \ge 0$.
 - endowment: A at date 0.
- Investment and outcomes:
 - banks invest *i* at *t* = 0
 - intact (probability α) or distressed (probability 1α) at date 1
 - if distressed, 1-for-1 reinvestment need, can downsize to $j \in [0, i]$
 - perfect correlation [later: choice of correlation]
- Value and pledgeable income:

 $\rho_1>1>\rho_0\quad \text{per unit of investment.}$

Central Bank / Authorities

- Objective function: $W = V + \beta U$ with $\beta \leq 1$, where β
 - how strategic sector is (credit, payment system)
 - how politically powerful sector is
- Instrument:
 - tax investment in (short term, for the moment) storage technology and rebate proceeds lump-sum to consumers
 - \iff sets real interest rate R between t = 1 and t = 2(R = 1 without intervention)
 - rule out other forms of policy intervention (direct bailouts) for now

Comments

- Credit channel of monetary policy
- Only instrument = interest rate:
 - key: untargeted
 - amounts to assuming screening infinitely costly
 - ex: large fringe of agents/firms that can pretend to be distressed
- Distortion from monetary policy:
 - wedge between MRS and MRT
 - different from NK (dispersion in relative prices) \rightarrow monetary model?
- See paper \rightarrow explicit screening mechanism (untargeted aspects \implies insights robust)

II. BANK'S BEHAVIOR

- Representative bank hoards xi at date 0
- Continuation at scale j ($j \leq i$):

$$j = rac{xi +
ho_0 j}{R} \iff j = rac{xi}{R -
ho_0}$$

• Borrowing capacity when bank anticipates R :

$$i - A + xi = \alpha(\rho_0 + x)i \iff i = \frac{A}{1 + (1 - \alpha)x - \alpha\rho_0}$$

- Tradeoff between scale (i) or leverage (i/A) and ability to withstand shocks (j)
- Alternative sources of illiquidity (debt maturity, regulatory arbitrage, illiquid assets...)

Scale and leverage

- \bullet Banks always choose enough liquidity to continue in distress $x=R-\rho_0$
- Scale when bank anticipates R

$$\implies i(R) \equiv \frac{A}{1 + (1 - \alpha)R - \rho_0} \quad \text{decreasing in } R, (1 - \alpha)$$

Leverage

$$i/A = m(R) \equiv \frac{1}{1 + R(1 - \alpha) - \rho_0}$$

III. COMMITMENT SOLUTION

• Distortion from monetary policy (s = savings):

•
$$\widehat{V}(R) \equiv u(e_1 - s) + s$$
 with $u'(e_1 - s) = R$

- $\widehat{V}(R)$ concave, maximized at R=1
- If continuation is case of a shock,

$$\begin{array}{c} u(e_1-s)+Rs+\underbrace{(1-R)}_{\text{tax on}} & (s-i)=\underbrace{\widehat{V}(R)}_{\text{DWL}}-\underbrace{(1-R)}_{\text{implicit}}i\\ \text{storage}\\ \text{rebated to}\\ \text{consumers} \end{array}$$

• Ex ante welfare:

$$\alpha \widehat{V}(1) + (1-\alpha) \left[\widehat{V}(R) - (1-R)i(R) \right] + \beta (\rho_1 - \rho_0)i(R)$$

The monetary policy tradeoff

- Loose monetary policy:
 - creates DWL
 - involves implicit subsidy (redistribution from consumers to banking entrepreneurs)
 - boosts investment capacity (less liquidity to be hoarded)

Assumption (no ex ante wealth transfer)

$$\beta(\rho_1 - \rho_0) \le 1 - \rho_0 + 1 - \alpha$$

Assumption is NSC for

Optimal monetary policy under commitment: $R^c = 1$

IV. NO-COMMITMENT SOLUTION

• R^* = equilibrium interest rate in case of a macro-shock.

$$\implies x^* = R^* - \rho_0.$$

Continuation scale for $R \ge R^*$

$$j = \frac{\rho_0 j + x^* i(R^*)}{R} \implies j = \frac{R^* - \rho_0}{R - \rho_0} i(R^*)$$

• Ex post welfare (in case of a shock) for $R \ge R^*$:

$$W^{\text{ex post}}(R; R^*) = \widehat{V}(R) + \left[\beta(\rho_1 - \rho_0) - (1 - R)\right] \frac{R^* - \rho_0}{R - \rho_0} i(R^*)$$

Characterization of equilibria

• Define set correspondence $\mathcal{R}\left(\textit{R}^{*}
ight)$ by

 $\mathcal{R}(\mathbf{R}^*) = rg\max W^{ ext{ex post}}(\mathbf{R};\mathbf{R}^*)$

• $\mathcal{R}\left({{{R}^{*}}}
ight) = 1$ for all ${{R}^{*}} < 1$, if

$$w\equiv\beta(\rho_1-\rho_0)-(1-\rho_0)\leq 0$$

 Result #1: w < 0 ⇒ {R^{nc}} = {1} more demanding than NSC for R^c = 1.

• Result #2: w > 0 Equilibria: solutions of fixed point equation

 $R^{nc} \in \mathcal{R}(R^{nc})$

Assumption (ex post intervention) w > 0

Strategic Complementarities

- Time Inconsistency + Untargeted Intervention \implies Strategic Complementarities
 - time consistent equilibrium always an equilibrium: $1 \in \{R^{nc}\}$,
 - multiple equilibria
 - ex ante welfare ranked, better with higher R^{nc}
 - Pareto-ranking of equilibria for banks, better with lower R^{nc}
 - specific Pareto-dominant equilibrium for banks

$$x^*=0\iff R^*=
ho_0,$$

exists iff

$$V(1) - V(\rho_0) \leq \frac{wA}{1 - \alpha \rho_0}$$

- Time-inconsistency of monetary policy \neq inflation bias a la Barro-Gordon (1983)
- Efficient for government to provide liquidity in bad times [as in Holmström-Tirole 1998] but supplies too much of it in time-consistent outcome

Other illustration: endogenous correlation

- Suppose in addition:
 - continuum of states of nature
 - banks choose probability of distress in each state, subject ot overall probability of distress being $1-\alpha$
- Only strict equilibria: maximal correlation

Comparative Statics

- Equilibrium set $\{R^{nc}\}$ expanding in β and A
- Equilibrium set $\{R^{nc}\}$ expanding in γ
 - $\gamma=$ fraction of banks in distress in crisis
 - leverage i/A can increase and liquidity x can decrease with γ: opposite of standard corporate finance results (R constant)

- Liquidity requirement: $x \ge 1 \rho_0$
- Focus on **overall** exposure to aggregate risk, not only on risk of failure of **individual** institution:
 - Decreasing returns to regulation, $\{R^{nc}\}$ shrinking in fraction *n* of banks regulated
 - Pecking order of regulation:
 - assume cost of regulation ci^{λ} and distribution $dF(\beta, A)$
 - minimize cost of ensuring $\{R^{nc}\} \subseteq [\underline{R}, 1]$
 - regulate first banks with high $[eta\,(
 ho_1ho_0)-(1ho_0)]\,{\cal A}^{1-\lambda}$
- Bad idea: subsidize liquidity hoarding \implies : *i*/*A* increases, *x* decreases, subsidy turned into bigger investment, less liquidity or capital insurance and a more generous bailout
- Ineffective: breaking down big banks into smaller banks (unless for ex. $\beta(A_+)$)

Regulatory arbitrage

- Suppose regulation in place $x \ge 1 \rho_0$
- For simplicity, banks in distress with proba 1 at date 1
- However, banks might hoard liquidity in form of toxic assets
- cheaper: price $q_0 < 1$ at date 0
 - risky: return 0 with proba $1 \tilde{\alpha}$ and 1 with proba $\tilde{\alpha}$
- Similar characterization of equilibrium set {R^{nc}}, strategic complementarities in regulatory arbitrage
- Important to monitor quality of liquidity

V. OPTIMAL EX-POST INTERVENTIONS

- See paper
- Intervention not perfectly targeted because of informational rents
- Screening with downsizing for minor cries, monetary transfers for severe ones
- Always use monetary policy
- Region in which equilibrium bailout is purely monetary
- Strategic complementarities and multiple equilibria

CONCLUSION

- Mechanism complements other stories for widescale maturity-mismatch, illiquidity and correlated risk taking (behavioral, informational)
- Sowing the seeds of the next crisis
 - low date 0 interest rates increase leverage *i*/*A* and decrease liquidity *x*
 - loss of reputation for toughness
 - increase in cost of bailouts
- Nominal interest rates

V. MONETARY AND FISCAL BAILOUTS

- Unrestricted instruments: add possibility of fiscal bailouts
- Imperfectly targeted: asymmetric information
- Modeling
 - When adverse shock, fraction $\gamma \in [0,1]$ of firms face liquidity need [earlier: $\gamma = 1]$
 - Proportion ν of false positives: A fraction $(1-\gamma)\nu$ are mistaken by the state for banks that need liquidity.These banks know that they belong to the false-positives group

- Banks and their investors form perfect coalitions, banks have full bargaining power
- Banks can borrow from investors at same interest rate R
- Participation in bailout is voluntary
- Instruments when facing distribution dF(i, x) of banks
 - R
 - (wlog) gives $j\,(i,x) \leq i$ in exchange of shares, valued $\rho_0 j\,(i,x),$ to banks in distress
 - (wlog) lets intact banks continue at scale i, and gives them $T(i, x) \ge 0$

Timing within period 1

- **9** government announces rescue scheme $\{R, j(i, x), T(i, x)\}$
- each banking entrepreneur offers his investors an individually rational plan
 - participation, report, transfers between parties (constrained by limited liability)
 - investors at least as well off as without participation
- Sanking entrepreneur-investors coalition implements their stage-(2) agreement

Incentive and participation constraints

• Either intact bank cannot compensate its investors

$$j(i,x) < \frac{(\rho_0 + x)i}{R}$$
 (IC₁)

or coalition does not gain:

$$(\rho_1 - \rho_0)i + T(i, x) \ge (\rho_1 - \rho_0)j(i, x) + \left[j - \frac{(\rho_0 + x)i}{R}\right] \qquad (IC_2)$$

- Participation:
 - $T(i, x) \ge 0 \qquad (PC1)$ $j(i, x) \ge \frac{xi}{R \rho_0} \qquad (PC2)$
- Note that only (IC_2) and (PC_1) are relevant: optimum under (IC_1) has $j(i, x) = (\rho_0 + x) i/R \implies (IC_2)$ satisfied (even with T = 0)
- Later analysis: (PC_2) also irrelevant

Planning problem

$$\begin{aligned} & \operatorname{Max}\left\{\widehat{V}(R) + \int \left[\gamma w j(i, x) - (1 - \gamma) \nu (1 - \beta) T(i, x)\right] dF(i, x)\right\} \\ & \text{s.t.} \\ & (\rho_1 - \rho_0)i + T(i, x) = (\rho_1 - \rho_0)j(i, x) + \left[j(i, x) - \frac{(\rho_0 + x)i}{R}\right] \\ & j(i, x) \leq i \\ & T(i, x) \geq 0 \end{aligned}$$

Either T(i, x) = 0 or j(i, x) = i (or both)

Optimal ex post bailout

Let $\overline{\gamma}$ solution of

$$\gamma w / \left(1 + \rho_1 - \rho_0\right) = \nu \left(1 - \gamma\right) \left(1 - \beta\right)$$

(sufficient liquidity) if $R \le \rho_0 + x$, then T(i, x) = 0 and j(i, x) = i

2 (downsizing) if $R > \rho_0 + x$ and $\gamma < \overline{\gamma}$, then T(i, x) = 0 and $j(i, x) = \frac{(\rho_0 + x)/R + \rho_1 - \rho_0}{(1 + \rho_1 - \rho_0)}i$

• (high rents) if $R > \rho_0 + x$ and $\gamma > \overline{\gamma}$, then $T(i, x) = \left\lfloor 1 - \frac{\rho_0 + x}{R} \right\rfloor i$ and j(i, x) = i

Define

$$\bar{R}\left(\gamma\right) \equiv \frac{1-\rho_{0}}{\hat{\alpha}+\left(1-\hat{\alpha}\right)\left(1-\gamma\right)+\rho_{1}-\rho_{0}}$$

- (mild crisis, expensive refinancing) if $\gamma < \overline{\gamma}$ and $R > \overline{R}(\gamma)$, then $i/A = m(\rho_0)$ and x = 0
- (mild crisis, cheap refinancing) if $\gamma < \overline{\gamma}$ and $R < \overline{R}(\gamma)$, then i/A = m(R) and $x = R \rho_0$
- (severe crisis) if $\gamma > \overline{\gamma}$, then $i/A = m(\rho_0)$ and x = 0

