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Abstract

We investigate in this paper the structure of optimal matchings with competing criteria.

The surplus from a marriage match, for instance, may depend both on the incomes and

on the educations of the partners. Even if the surplus is complementary in incomes, and

complementary in educations, imperfect correlation between income and education at the

individual level implies that the social optimum must trade off matching on incomes and

matching on educations. We characterize, under mild assumptions, the properties of the

set of feasible matches, and of the socially optimal match. Then we show how data on

correlations of the types of the partners in observed matches can be used to test that the

observed matches are socially optimal. Under optimality, our procedure also provides an

estimator of the parameters that define social preferences over matches, thereby introducing

the Matching Revealed Preferences (MaRP) estimator. We illustrate our approach on data

from the June 1995 CPS.

JEL codes: C78, D61, C13.



Introduction

Louisa Burton was naturally ill-tempered and cunning; but (...) with such an

extraordinary share of personal beauty, joined to a gentleness of manners, and

an engaging address, she might stand a good chance of pleasing some young

Man who might afford to marry a Girl without a Shilling.

Jane Austen, Lesley Castle (1792).

Starting with Becker (1973), most of the economic theory of one-to-one matching has

focused on the case when the surplus created by a match is a function of just two numbers:

the one-dimensional types of the two partners. As is well-known, when the types of the

partners are one-dimensional and are complementary in producing surplus, then the socially

optimal matches exhibit positive assortative matching. Moreover, the resulting configura-

tion is stable: it is in the core of the matching game; and it can be implemented by the

celebrated Gale and Shapley (1962) deferred acceptance algorithm.

While this result is both simple and powerful, its implications are also quite unrealistic.

If we focus on marriage and type is education for instance, then positive assortative matching

has the most educated woman marrying the most educated man, then the second most

educated woman marrying marrying the second most educated man, and so on. In practice

the most educated woman would weigh several criteria in deciding upon a match; even

in the frictionless world studied by theory, the social surplus her match creates may be

higher if she marries a man with less education but, say, a similar income. Since income

and education are only imperfectly correlated, the optimal match must trade off assortative

matching along these two dimensions. This point is quite general: with multiple types, the

stark predictions of the one-dimensional case break down.

Empirical models of matching have long felt the need to accommodate the imperfect

assortative matching observed in the data, of course. This can be done by introducing noise,

in the form of heterogeneity in creation of surplus that is unobserved by the analyst (see

Choo and Siow (2006).) Models with multidimensional types can also be estimated from
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the data, as in Chiappori, Salanié, Tillman, and Weiss (2008). But as far as we know, there

has been little theoretical work exploring the properties optimal or equilibrium matches in

such models. This is the task we set ourselves in the theoretical (and for now the only) part

of this paper: we analyze the set of cross-products across partners that can be rationalized

by such a model, and we show how to estimate this set from data and to test that the

observed matching is socially optimal.

We first focus on a model without noise: the surplus created by a match is an unknown

function of the types of the partners only. With one-dimensional types, positive assortative

matching of course implies that the correlation between the types of partners is maximized.

We show that with multidimensional types, the predictions of the matching model can be

phrased in terms of the “cross-products”, that is the set of expectations of functions of type

dimensions of both partners across matches. In the education/income example, these could

boil down to the three proportions of matches with given education levels of the partners,

along with the average income of men matched with an educated woman, and the average

income of women matched with an educated man.

Our main result shows that the cross-products implied by the socially optimal match

must be on the frontier of the convex set of all feasible cross-products. We also show how

knowing the observed cross-products in a dataset is enough to recover the match surplus

function if the observed match is socially optimal; and to reject this hypothesis otherwise.

The computational burden required for estimation is testing is much alleviated by the

existence of very fast algorithms for matching.

We abstract away in this version from the determination of individuals who are un-

matched in the optimal assignment, e.g. singles on the marriage market. This is without

loss of generality when there is no unobserved heterogeneity, or when the unobserved hetero-

geneity is “separable”, in a sense that we make clear. Then our analysis is just conditional

on the optimal set of individuals who have a match at the optimum.

While we use the language of the economic theory of marriage in our illustrations,

nothing we do actually depends on it. The methods proposed in this paper apply just as
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well to any one-to-one matching problem1.

In work in progress, we implement our method to study the marriage market using data

from the Current Population Survey in the US. We plan to use six waves of the June CPS,

between 1971 and 19952. This version of the paper only reports illustrative results on the

1995 wave.

1 The Assignment Problem

In all of the paper, we assume that two subpopulations M and W must be matched; each

man (as we will call the members of M) must be matched with one and only one member of

W (we will call them women.) Thus we do not allow for unmatched individuals—we return

to this assumption later.

Each man m has an r-dimensional type xm, and each woman w has a s-dimensional type

yw. Matching man m and woman w produces a social surplus V (xm, yw), which we assume

to be known by the social planner. For now we also assume away unobserved heterogeneity:

V is a deterministic function of types.

A word on terminology: like most of the literature, we call a “match” the pairing of a

man and a woman, and a “matching” or a complete set of matches, in which every man is

paired with a woman, and vice versa.

1.1 Basic Assumptions

We consider K given basis social benefit functions v1(x, y), ..., vK(x, y) whose values are

interpreted as the social benefit of interaction between type x and type y. Given a social

weight λ ∈ RK , we consider the social benefit function

Vλ(x, y) =
K∑
k=1

λkvk(x, y) (1.1)

1Or bipartite matchings in the terminology of applied mathematics.
2Later surveys unfortunately lack information that is required to analyze matches.
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where the sign of each λk is unrestricted.

To return to the example in the introduction, which we denote (ER): there r = s = 2,

the first dimension of types is education E ∈ {D,G} (dropout or graduate), and the second

dimension is income R, a continuous variable. Then a match between man m and woman

w creates a surplus

V (xm, yw) = λEEvEE(Em, Ew)+λERvER(Em, Rw)+λREvRE(Rm, Ew)+λRRvRR(Rm, Rw).

We shall make the simplifying restriction to restrict each vij(xi, yj) to be the cross-

product xiyj of the types. With only one dimension (r = s = 1), this would give us the

simplest form of complementarity between types—and depending on the sign of λ11, positive

or negative assortative matching would be optimal. Thus cross-products provide us with

a useful starting point. We explain later how our inference procedure can be adapted to

actually estimate the set of (vij) functions that rationalize an observed matching as optimal.

In our (ER) example, after obvious normalizations that do not change the structure of

the assignment problem we can now write, with E = (D,G) coded as (0, 1):

V (xm, yw) = 11(Em = Ew) + λERE
mRw + λRER

mREw + λRRR
mRw.

We now introduce a class of basis social benefit functions which will be of particular

interest in the sequel.

Quadratic Interactions (QI) will denominate the case where the basis social benefit

functions are polynomial functions of degree 2, namely (changing the indexation) vij(x, y) =

xiyj . Denoting Λ the matrix of λij , we get that

VΛ(x, y) =
∑

1≤i≤r
1≤j≤s

λijxiyj = x′Λy (1.2)

As moments involving only x or y depend on the fixed marginal distributions of the

types and not on the matching, the terms of degree zero and one do not matter in the
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expression, and can be omitted, as well as the terms in x2
i and y2

j . Thus under (QI), we

could have equivalently chosen to define the surplus as

V̂Λ (x, y) = −
∑

1≤i≤r
1≤j≤s

λij (xi − yj)2 ,

as maximizing E [VΛ (X,Y )] and maximizing E
[
V̂Λ (X,Y )

]
over the feasible matchings are

clearly equivalent. Also note that the quadratic restriction on the basis functions implies

the notable restriction that for any x and y 1 ≤ i ≤ r and 1 ≤ j ≤ s, the cross-derivative
∂2VΛ
∂xi∂yj

does not depend on the other dimensions x−i and y−j .

We will sometimes make the stronger assumption that characteristics do not cross-

interact, eg. there is no variation of surplus of matching a rich man with a more or less

educated woman, all other things being equal:

Diagonal Quadratic Interactions (DQI) will describe the case r = s and Λij = 0

for i 6= j, so that

Vλ(x, y) =
r∑
i=1

λixiyi. (1.3)

In this form, it is clear that the relative importance of the λi’s reflects the relative

importance of the criteria. Thus λi also measures the social concern for matching partners

who are similar in dimension i.

In the (ER) example, this would lead to the following specification

V (xm, yw) = −λE(Em − Ew)2 − λR(Rm −Rw)2,

and λR would measure how much more it matters for incomes of partners to be similar3

than it matters for educations.
3Or dissimilar, if λR < 0.
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1.2 Notation and Definitions

We denote P (resp. Q) the distribution of types x (resp. y) in the subpopulation M (resp.

W .) Thus P is a probability distribution on IRr and Q is a distribution on IRs. In actual

datasets we will have a finite number N of men and women, so that

P =
1
N

N∑
m=1

δxm , and Q =
1
N

N∑
w=1

δyw .

Choosing a set of matches is essentially equivalent to choosing a correlation structure,

or a copula, between types of partners. We denote Γ (P,Q) the set of random vectors (x, y)

such that the marginal distribution of x is P and that of y is Q; and M (P,Q) is the set of

distributions of elements of Γ (P,Q).

The formal definition of a matching (or assignment) follows immediately: it is defined

as a probability measure π on whose marginals coincide with P and Q, so that the set of

matchings is M (P,Q).

All of our analysis is easily adapted to the case where P and Q are absolutely continuous

with respect to the Lebesgue measure; this case can be thought as an approximation to the

previous one, with a large number of individuals and a distribution of characteristics which

is sufficiently spread.

Alternatively (and equivalently), a matching π is described by two functions:

• one (πm) mapping the set of types in the support of P to probability distributions

over the support of Q;

• and one (πw) mapping the set of types in the support of Q to probability distributions

over the support of P .

Then in a matching π, a man of type x will be matched randomly with a woman of type

y drawn according to the conditional distribution

πw(y;x) =
π (x, y)∫
π (x, z) dz

,
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and similarly for a woman of type y.

A matching is said to be pure if both πm and πw are Dirac masses. Then there ex-

ists an invertible function T = πm such that π assigns zero outer probability to the set

{(x, y) : y 6= T (x)}; and T−1 = πw.

In a pure matching π, a man with type x almost surely is matched with a woman of

type y = T (x), and conversely, a woman with type y almost surely is matched with a man

of type x = T−1 (y).

2 Solving for the Optimal Matching

We focus here on the matching that maximizes the total surplus. When utilities are trans-

ferable across partners, we shall see below that the social optimum can be decentralized

through a competitive matching market. In any case, the socially optimal matching solves

K (Λ) := max
π∈M(P,Q)

Eπ [VΛ (x, y)] . (2.1)

Unless explicitly mentioned otherwise, we will make the Quadratic Interactions (QI) as-

sumption throughout the rest of the paper, thus VΛ has the form (1.2). Note however that

the results and the methodology can be directly generalized to the more general restriction

for V given by (1.1). We feel however that such a generalization would come at cost of an

extra expositional burden, so we chose to restricts the exposition to the quadratic case.

In order to study the structure of optimal matchings, we introduce some terminology.

For any matching π, we denote C(π) the (r, s) matrix of expectations of cross-products of

types within matches:

Cij(π) = Eπxiyj .

We call such a matrix Cπ a cross-product matrix.

The feasible set of cross-products, denoted F , is the set of cross-product matrices C for

which there exists a matching π, not necessarily pure, such that C = C(π).
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For any given matrix Λ, the efficient set of cross-products E(Λ) is the set of feasible

cross-product matrices C(π) such that π solves (2.1).

Finally, the rationalisable set of cross-products, denoted R, is the union of the efficient

sets of cross-products E(Λ) when the matrix Λ varies in IRrs. When C is in R, there exists

a matrix Λ and a matching π such that

• π solves (2.1) for this value of Λ;

• and C = C(π).

Then we say that Λ rationalizes the cross-product matrix C.

Finally, we call the graph of the feasible set of cross-products in IRrs the covariogram.

To sum up, the assignment problem can be viewed as follows: given distributions P

and Q on sets of types, a feasible matching π is a joint distribution that has P and Q as

marginals; and any feasible matching π implies a matrix of cross-products C. The resulting

feasible C define the set F in IRrs. Among all feasible matchings, the optimal matchings

for a matrix of social weights Λ solve (2.1) and generate cross-products in E(Λ). Finally,

the union of all sets E(Λ) is the set of rationonalizable cross-products R.

Note that these sets are unchanged if the surplus VΛ(x, y) is changed into VΛ(x, y) −

u(x)−v(y), for any functions u and v. This remark will be important when considering the

competitive equilibrium.

2.1 The feasible set

We begin by studying the set of feasible cross-products. Since much of what we do uses

convexity, we first recall some definitions4.

Take any set Y ⊂ IRd; then the convex hull of Y is the set of points in IRd that are

convex combinations of points in Y . We usually focus on its closure, the closed convex hull.
4We refer the reader to Ekeland and Témam (1976) for more.
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The support function SY of Y is defined as

SY (x) = sup
y∈Y

x · y

for any x in Y . It is a convex function, and it is homogeneous of degree one. Moreover,

SY = Scch(Y ) where cch (Y ) is the closed convex hull of Y , and ∂SY (0) = cch (Y ).

Now let u be a convex, continuous function defined on IRd. Then the gradient ∇u of u

is well-defined almost everywhere and locally bounded. If u is differentiable at x, then

u
(
x′
)
≥ u (x) +∇u (x) · (x′ − x)

for all x′ ∈ IRd. Moreover, if u is also differentiable at x′, then(
∇u (x)−∇u

(
x′
))
·
(
x− x′

)
≥ 0.

When u is not differentiable in x, it is still subdifferentiable in the following sense. We define

∂u (x) as

∂u (x) =
{
y ∈ IRd : ∀x′ ∈ IRd, u

(
x′
)
≥ u (x) + y · (x′ − x)

}
.

Then ∂u (x) is not empty, and it reduces to a single element if and only if u is differentiable

at x; in that case ∂u (x) = {∇u (x)}.

Our first result is as follows:

Proposition 1 a) The feasible set F is a non-empty closed convex set in IRrs.

b) The function K (Λ) is convex and homogeneous of degree one, and it is the support

function of the set of feasible cross-products F .

Proof a) Non-emptiness is obvious. Now F is convex: Let Ĉ and C̃ be two feasible cross-

product matrices in F . We first show that for any α ∈ [0, 1], αĈ + (1− α) C̃ is in F .

By definition of F , there exist π̂ and π̃ in M (P,Q) such that Ĉij = Eπ̂ [XijYij ] and

C̃ij = Eπ̃ [XijYij ].

Let π̄ = απ̂+ (1− α) π̃. Then αĈij + (1− α) C̃ij = Eπ̄ [XijYij ], and π̄ ∈M (P,Q), thus

αĈ + (1− α) C̃ ∈ F .
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Now we prove that F is closed: Let Cn be a sequence in F converging to C ∈ IRrs, and

let πn be the associated matching. By Theorem 11.5.4 in Dudley (2002), as M (P,Q) is

uniformly tight, πn has a weakly converging subsequence inM (P,Q); call π its limit. Then

C is the cross-product associated to π, so that C ∈ F .

b) By definition of F , we can rewrite K as

K (Λ) = sup
C∈F

r∑
i=1

s∑
j=1

λijCij (2.2)

which shows that K is the support function of F , and in particular that it is convex and

homogeneous of degree one.

2.2 The rationalisable set

We have the following important characterization of the rationalisable set as the frontier of

the feasible set of cross-products.

Proposition 2 a) The frontier of F is the rationalisable set R.

b) The efficient set E (Λ) is the subgradient of K at Λ, E (Λ) = ∂K (Λ).

c) In particular, when K is differentiable at Λ, E (Λ) is a singleton {C∗(Λ)}; there is a

unique optimal matching π∗(Λ), and it is pure; finally,

C∗ij(Λ) = Eπ∗(Λ) [xiyj ] =
∂K (Λ)
∂λij

.

Proof a) The frontier of F is given by Fr (F) =
⋃

Λ∈IRrs
∗
∂K (Λ); but as we saw, E (Λ) =

∂K (Λ), and thus the frontier of F is precisely R.

b) By definition, E (Λ) = arg max
{
C ∈ F :

∑d
i=1 ΛijCi

}
. From the envelope theorem,

it follows that E (Λ) = ∂K (Λ).

c) follows as an immediate corollary.

Any value of the social weights Λ where K(Λ) is not differentiable generates a kink in

the frontier R of the covariogram. These kinks are not theoretical curiosa; in fact, with
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finite datasets the rationalizable frontier always has a finite number of kinks. We shall

mention two important special cases concerning the regularity of K.

Proposition 3 a) When the distributions P and Q are absolutely continuous with respect

to the Lebesgue measure, the function K is everywhere differentiable.

b) When the distributions P and Q are discrete with N atom points of mass 1/N , the

function K is piecewise linear. The space IRrs of Λ matrices is partitioned into a finite

number p of convex cones, in the interior of which the efficient cross-product matrix C∗ (Λ)

is constant. Let {C1, ..., Cp} be the values of these p constants. The rationalisable set R is

a polytope whose vertices are the Ck’s.

Proof a) By Brenier’s theorem (cf. Villani (2003), pp. 66-67), when the distributions P

and Q are absolutely continuous with respect to the Lebesgue measure, then the optimal

transportation plan π ∈M (P,Q) which is the distribution of (X,Y ) ∈ Γ (P,Q) solution to

(2.1) is unique for any (nonzero) Λ.

In particular, ∂K (Λ) = {C∗(Λ)} where C∗ij (Λ) = E [xiyj ] at the optimal matching.

Therefore K is differentiable at Λ.

b) Denote P = 1
N

∑N
m=1 δxm , and Q = 1

N

∑N
w=1 δyw . Let SN denotes the set of per-

mutations of {1, ..., N}. Then F is by definition the convex hull of C(σ) where C(σ)ij =
1
N

∑N
m=1 x

m
ij y

σ(m)
ij . Since K (λ) = maxσ∈SN

1
N

∑N
m=1 x

m′Λyσ(m), K is piecewise linear.

As F = conv (C(σ) : σ ∈ SN ), it follows that F is a polytope, and there is a subset of

{C(σ) : σ ∈ SN} which is the set of extreme points of F , which are also the vertices of F .

Figure 1 illustrates the case of more empirical interest in which the distributions P and

Q are discrete. The “ideal” or limiting case of continuous distributions is illustrated in

Figure 2. The details of the construction of these figures can be found in the appendix.
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Figure 1: Covariogram when both distributions are discrete. The x (resp. y) axis measures

the cross-product of the first (resp. second) characteristics.

2.3 Comparative statics

First, note that R can be defined in an alternative manner, which directly leads to an

interpretation in terms of sacrifice ratios:

Proposition 4 a) Take any Λ and any cross-product matrix C that is efficient for Λ.

Reorder and redefine dimensions so that λ11 > 0. Then C11 is the value of the constrained

optimization problem (CO):

max
(X,Y )∈Γ(P,Q)

E [X1Y1] : E [XiYj ] ≥ Cij forall(i, j) 6= (1, 1).

b) When K is differentiable at Λ, then on the rationalisable frontier

dCij
dCkl

= −λkl
λij

. (2.3)

Proof a) Assume that C11 is the value of (CO). Write the Lagrangian associated to the

problem: there exist some real numbers lij , (i, j) 6= (1, 1) such that C is the solution of
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Figure 2: Covariogram for two bivariate Gaussian distributions.

maxc∈F c11 +
∑

(i,j)6=(1,1) lijCij . Therefore, C ∈ E (Λ) if we define Λ by λ11 = 1 and λij = lij

for (i, j) 6= (1, 1).

Conversely, assume that C11 is not the value of (CO). Then either C /∈ F , in which case

C cannot be in E (Λ), or C ∈ F and C11 < max(X,Y )∈Γ(P,Q)E [X1Y1] : E [XiYj ] ≥ Cij ,

∀(i, j) 6= (1, 1).

But as F is a convex closed set, this would imply that C is in the strict interior of F ,

hence by Theorem 1 in this case as well C cannot be in E (λ). This completes the proof.

b) Recall that K (Λ) is positive homogeneous of degree 1. Then by Euler’s theorem, if

K is differentiable at Λ then

r∑
i=1

s∑
j=1

λij
∂K

∂λij
(Λ) = K(Λ).

Differentiating this w.r.t. some λkl, we get

r∑
i=1

s∑
j=1

λij
∂2K

∂λij∂λkl
(Λ) = 0.
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But we know from Theorem 1 that

∂K

∂λij
(Λ) = C∗ij(Λ);

it follows that
r∑
i=1

s∑
j=1

λij
∂Cij
∂λkl

(Λ) = 0 (L)

Now Euler’s equation can be rewritten as

r∑
i=1

s∑
j=1

λijC
∗
ij(Λ) = 0;

a fortiori,(
r∑

a=1

s∑
b=1

λab
∂C∗ab
∂λij

)
dλij +

(
r∑

a=1

s∑
b=1

λab
∂C∗ab
∂λkl

)
dλkl + C∗ijdλij + C∗kldλkl = 0.

Given (L), the first two terms are zero and we obtain

C∗ijdλij + C∗kldλkl = 0.

Thus on the rationalisable frontier
dCij
dCkl

= −λkl
λij

.

The interpretation of part b) of this result is clearest under (DQI). With several dimen-

sions for types, the optimal matching must sacrifice some cross-product in one dimension to

the benefit of some cross-product in another. The implied sacrifice ratio, quite naturally, is

exactly the ratio of the social weights along these dimensions. Note that in particular, when

there are only two observed characteristics, if we set λ1 = 1 and λ2 = ε, then the function

ε → C∗1 (1, ε) is decreasing, and the function ε → C2∗ (1, ε) is increasing. Therefore, when

one puts more weight on the second dimension, the cross-product of the characteristics in

the second dimension increases, while that of the first dimension decreases.
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2.4 Market equilibria and the structure of rationalisable matchings

2.4.1 Market equilibria

We now turn to the case where utilities are transferable. In this case, it is known that the

socially optimal assignment can be decentralized though a competitive matching market.

Given a matching π ∈ M (P,Q), define two payoff functions U : X → IR and V : Y → R

such that

U (x) + V (y) ≤ V (x, y) , ∀ (x, y) ∈ supp (π) (2.4)

We say that payoff functions U and V stabilize a matching π if

U (x) + V (y) ≥ V (x, y) , ∀ (x, y) ∈ X × Y (2.5)

Gretsky, Ostroy, and Zame (1999) proved that

Proposition 5 (Gretsky, Ostroy, and Zame) A matching π is stabilized by two payoff

functions U and V if and only if it is optimal in the sense of equation (2.1).

The matching market can be seen as a cooperative game where a matching should not

be blocked by any coalition of players. A matching which is not blocked by any coalition

is said to be stable. Two players (a man and a woman) might decide to block a given

matching if together they generate a larger surplus than the sum of their payoffs in the

current matching, hence the stability condition (2.5). The set of stable matchings is the

core of this cooperative game where utilities are supposed transferable, and in a stable

matching where x and y are matched, the equation V (x, y) = U (x) + V (y) indicates that

U (x) is the share of the surplus assigned to the man, and V (y) is the share of the surplus

assigned to the woman.

2.4.2 Structure of the rationalisable matchings

Proposition 6 a) When the distributions P and Q are absolutely continuous with respect

to the Lebesgue measure, then a matching is efficient for parameter value Λ, if and only
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if there exists a convex function U such that x gets almost surely matched with an y that

satisfies

Λy ∈ ∂U (x) .

b) When the distributions P = 1
N

∑N
m=1 δxm and Q = 1

N

∑N
w=1 δyw are discrete with N

atom points, let π be any matching that is optimal for some parameter value Λ. Then there

exists two utility vectors (um)m=1,...,N and (vw)w=1,...,N such that for any m and w,

um + vw ≥ xm′Λyw,

with equality if and only if man m and woman w are matched.

Proof a) Suppose that Λ is invertible (by density there is no loss of generality in doing

so). Assume that matching π is optimal for parameters Λ. Then by Proposition 5, there

exist payoff functions U and V that stabilize the matching. Denote y′ = Λy, and V ′ (y′) =

V
(
Λ−1y′

)
, and let π′ be the measure image of π by (Id× Λ). Then the matching π′ is

stabilized by the payoff functions U and V ′, that is

U (x) + V ′
(
y′
)
≥ x · y′

with equality if and only if (x, y′) ∈ supp (π′). Note that payoffs U and V ′ can be taken

convex without lack of generality, in which case the equality condition translates into:

(
x, y′

)
∈ supp

(
π′
)

if and only if y′ ∈ ∂U (x), that is Λy ∈ ∂U (x). The reverse implication works similarly.

b) This follows directly from Proposition 5.

We now state a proposition that shows that when all weights but one tend to zero, the

classical one-dimensional assortative matching obtains in the limit. We refer the reader to

Carlier, Galichon, and Santambrogio (2008) for a proof and for a more detailed investigation

of the structure of the limiting matchings.
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Proposition 7 When λ1 = 1 and λj → 0 for j ≥ 2, let letting π∗(Λ) be the Λ-optimal

matching, and (X,Y ) ∼ π∗(Λ). Then the distribution of the first characteristics (X1, Y1)

converges towards the distribution π1 such that (X1, Y1) ∼ π1 is maximally correlated, or

equivalently such that X1 and Y1 are comonotone, thus recovering classical Positive Assor-

tative Matching.

3 Empirical Estimation

3.1 The Matching Revealed Preferences (MaRP) estimator

Our empirical strategy starts with an observed matching of N matches, on which we first

straightforwardly estimate the matrix of the cross-products of the observed types ĉN , as

well as the marginal distributions of types P̂N and Q̂N . Then we use our theory to answer

two questions:

1. is the observed matching optimal?

2. which parameter Λ best rationalizes the observed matching (exactly if the observed

matching is optimal, approximately if it is not)?

To address these two questions, we also need to construct the covariogram for the observed

marginal distributions P̂N and Q̂N , maximizing the empirical KN objective function. Then

we denote FN the feasible cross-products set, and RN its frontier. Finally, the cross-

products that results from matching men and women randomly (so that π is the independent

product of P̂N and Q̂N ) plays a special role, so we denote it c0
N . Note that without loss

of generality we can assume that the distribution of the men and the women’s types are

centered, so we will take c0
N = 0.

Given this data, we use the following simple proposition:

Proposition 8 There exists a unique t̂N ≥ 1 such that t̂N ĉN ∈ RN ; and t̂N = 1, if and

only if ĉN ∈ RN .
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There exists a convex cone L̂N ⊂ IRrs such that t̂N ĉN ∈ ∂KN (Λ) if and only if Λ ∈ L̂N .

Before we give the proof of the proposition, note that in the discrete case the covariogram

is a polyhedrom, and the kinks of this polyhedron are in fact typical, in the sense that the

set of Λ’s which do not map to a vertex of this polyhedron are of measure zero: they

coincide with the points of nondifferentiability of K. When N gets large, these vertices get

closer and closer and (if the distribution in the population are absolutely continuous with

respect to the Lebesgue measure), the covariogram converges to a smooth convex set in the

Hausdorff topology.

Proof Note that c0
N = 0 ∈ FN as this is the cross-product matrix obtained by the inde-

pendent matching (again, we have supposed that the types distributions were centered).

(X,Y ) where X ∼ P̂N , Y ∼ Q̂N and (X,Y ) independent. The existence and unicity of t̂N

follows from the compacity of FN .

Therefore t̂N = 1 if and only if ĉN is rationalizable, and the matrices Λ ∈ L̂N are the

estimators of the social weights we are looking for. We now turn to a characterization of

t̂N and L̂N . We now denote Λ · c the matrix scalar product tr(Λ′c).

Theorem 1 Take a number t and a matrix Λ. Then t = t̂N and Λ ∈ L̂N if and only if

(t,Λ) solves

min
Λ

max
t≥0

KN (Λ) + t(1− Λ · ĉN );

or equivalently, if Λ solves

min
Λ
KN (Λ) s.t. Λ · ĉN = 1

and t is the Lagrange multiplier associated to the constraint.

Proof The first problem is the Lagrangian associated to the second problem. The first

order condition associated to the first problem is t̂N ĉN ∈ ∂KN (Λ), QED.

18



Note that t > 0, hence if ĉrs 6= 0, one can rewrite the constrained optimization problem

as an unconstrained optimization problem on IRrs−1 as

min
(λ1,1,...,λr,s−1)

Φ (λ1,1, ..., λr,s−1)

Φ (λ1,1, ..., λr,s−1) : = K

(
λ1,1, ..., λr,s−1,

1− ĉ1,1λ1,1 − ...− ĉr,s−1λr,s−1

ĉr,s

)
,

which is the form we are going to use to determine Λ using a gradient algorithm. For a

choice of ε > 0:

Algorithm 1 (MaRP) Take some initial choice of (λ1,1, ..., λr,s−1) 6= 0IRrs−1.

1. Compute λr,s = 1−ĉ1,1λ1,1−...−ĉr,s−1λr,s−1

ĉr,s . By running a standard assignment algo-

rithm, (cf. Bertsekas (1981)), compute the optimal matching with weights Λ and the asso-

ciated cross-product C. Compute ∇Φ =
(
Cij − ĉij

ĉrsCrs
)
ij

, and λ′ij := λij−ε
(
Cij − ĉij

ĉrsCrs
)

.

2. Replace Λ by Λ′, and iterate step 1 until ‖Λ− Λ′‖ is small enough. One has C = tĉ,

with t ≥ 1. Return t = C11/ĉ11 and Λ.

3.2 Asymptotic analysis

It is possible to show that when the distribution of men and women’s types in the population

are absolutely continuous with respect to the Lebesgue measure, then our estimator (tN ,ΛN )

has an asymptotic Gaussian distribution with standard n1/2 rate of convergence. Exposition

is left for future work.

4 An Empirical Illustration

To explore the fruitfulness of our proposed approach, we extracted data on married couples

in the US from the June 1995 Current Population Survey. We chose to focus on the trade-

off between matching on education levels and matching on earnings. Thus by necessity we

exclude couples in which one at least of the partner is not working at the time of the survey.

To reduce the heterogeneity in the sample, we only keep couples whose members are both
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Table 1: Descriptive statistics

Age of husband Age of wife Education, H Education, W Earnings, H Earnings, W

Q1 35 34 1 1 0.473 0.249

Median 40 38 2 2 0.653 0.385

Q3 44 43 2 2 0.898 0.575

white, non-Hispanic, were born in the US from US-born parents. We also eliminate couples

where one of the partners was younger than 30 or older than 50 in 1995. This selection

leaves us with 1,133 couples.

We recoded the education variable in the CPS so that it takes three values:

0. high school dropout

1. high school graduate

2. college graduate.

Table 1 describes the data (earnings are measured in thousands of dollars per week.)

Denote Em and Ym (resp. Ew and Yw) the education level and earnings of the husband

(resp. the wife.) We specify the social surplus function to take into account educational

endogamy, earnings endogamy, and the interaction between both:

V (Em, Ym, Ew, Yw) =
∑

e=0,1,2

λe11(Em = Ew = e)−λy(Ym−Yw)2−
∑

e=0,1,2

λey
2

11(Em = Ew = e)(Ym−Yw)2.

We expect all λ’s to be positive, but we do not impose it at priori. Thus we end up with a

set of 7 basis functions, two for each value e = 0, 1, 2:

11(Em = Ew = e) and − 11(Em = Ew = e)(Ym − Yw)2,

and the function −(Ym − Yw)2.
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We gather the corresponding coefficients λe, λy and λey, in a vector Λ.

This specification embodies three restrictions that may be too severe. First, it imposes

that when partners have different education levels, the social surplus is the same whatever

these levels are. Second, it restricts the earnings endogamy term to be quadratic. Third, it

neglects other factors such as age, or at least it assumes the kind of orthogonality discussed

in our subsection on heterogeneity. We will work to remove these restrictions in further

research.

We first compute the efficient frontier of the feasible polytope by drawing 500 values

of the vector Λ on the unit sphere S5. For each value, we use the Munkres algorithm to

determine the optimal matching. Given that we have to do it a large number of times, we

reduced the sample size to 200 randomly drawn couples. The 500 optimal matchings trace

the 6-dimensional efficient frontier.

With seven dimensions, the feasible polytope is not easy to describe. Recall that the

seven components of a point in a polytope measure the expectations of the seven basis

functions for the corresponding efficient matching. The first three are just the probabilities

of a match in which both partners have the education level e = 0, 1, 2. The absolute value

of the fourth basis function is minus the average square difference of earnings between

partners; and the last three modulate it when partners have the same education level.

First, we note that three of our estimated λ̂k’s are actually negative: the λe for high-

school dropouts, λy, and the λey for high-school dropouts. Thus the social benefit func-

tion that comes closest to rationalizing the observed matching values marrying high-school

dropouts to more educated and higher-earnings partners, as well as marrying partners with

dissimilar incomes when they have different education levels. It is easy to play with the es-

timated parameters to answer “what if” questions. For instance, start from a couple whose

members have the same education e and the same earnings; then changing the earnings of

one partner by d thousand dollars a week (and keeping all matches as they are!) reduces

the social benefit by (λy +λey)d2, while changing the education level of one partner reduces

it by λe. This gives an “income equivalent of education endogamy”. We compute it as a
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weekly $560 for high-school dropouts, $1,450 for high-school graduates, and a much smaller

$460 for college graduates.

Rather than elaborate further on these results, we go directly to the test that the

observed matching is efficient, and to our estimator for the social benefit function.

Easy algebra shows that λ̂ and t̂ can be obtained by the following steps:

1. find (λ̂1, . . . , λ̂K−1) to minimize

K

(
λ1, . . . , λK−1,

1−
∑K−1

k=1 λk ĉk
ĉK

;

)
2. define

λ̂N =
1−

∑K−1
k=1 λ̂k ĉk
ĉK

;

3. compute the cross-products C(λ̂) for the efficient matching corresponding to λ̂ (this

is a direct by-product of the minimization in step 1);

4. regress ĉ on C(λ̂) by OLS, without a constant term;

5. take t̂ to be the estimator in this regression.

The latter is justified by the fact that under the null of efficiency, ĉ = C(λ̂) and so
K∑
k=1

(ĉk − tCk(λ̂))2

is minimized in t = 1.

When running this, we find a multiplier t̂ = 0.83. We are not ready to give a standard

error yet, and so we refrain from overinterpreting this number; but it does seem reason-

ably close to one. Computing the social benefit from the observed matching confirms that

given the estimated λ̂, the observed matching is about 15% less efficient than the optimal

matching. A social planner with these preferences would for instance regret that high-school

dropouts are too endogamous, and other categories not enough. An alternative conclusion,

which should wait for a formal test, is that the observed matching is inefficient; then the

estimator λ̂ has no particular claim to represent “social preferences”, and such statements

are unwarranted.
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5 Remarks and extensions

Our theory so far makes some assumptions that we intend to relax.

5.1 Single households

So far we have not allowed for unmatched individuals. In an optimal matching, some men

and/or women may remain single, as of course some must if there are more individuals on

one side of the market. The choice of the socially optimal matching can be broken down

into the choice of the set of individuals who participate in matches and the choice of actual

matches between the selected men and women. Our theory applies without any change to

the second subproblem; that is, all of our results extend to M and W as selected in the first

subproblem.

5.2 Unobserved heterogeneity

Of course, any empirical application must take unobserved heterogeneity into account.

There are several ways to do this here. Let us focus on the situation where agents are

matched efficiently relative to a vector of types of dimension r = s, but only the first

r0 < r dimensions are observed by the econometrician. The true empirical cross-product

Ĉ =
(
Ĉ1, ...Ĉr

)
is on the efficient set R in IRr; but the observed cross-product C̄ =(

Ĉ1, ...Ĉr0 , 0, ..., 0
)

is in the intersection of the feasible set F and the space

Vobs = {c ∈ IRr : cr0+1 = ... = cr = 0} .

Similarly, define

Vlat = {c ∈ IRr : c1 = ... = cr0 = 0} .

For c ∈ IRr, denote πobs and πlat the orthogonal projections of c on respectively Vobs and

Vlat. In general, C̄ = πobs
(
Ĉ
)

is not in the efficient set R, and estimators based only on

the observed cross-products will be biased. However, there is one important case in which

the bias vanishes:
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Proposition 9 Assume that observed and latent characteristics are distributed indepen-

dently within each subpopulation; that is, P = Pobs ⊗ Plat where Pobs is the distribution

on the r0 first characteristics and Plat is the distribution of the r − r0 last characteristics,

and with similar notation Q = Qobs ⊗Qlat.

Then for any C ∈ F ,

C ∈ R if and only if πobs (C) ∈ R and πobs (C) ∈ R,

hence C̄ = πobs
(
Ĉ
)

allows unbiased estimation of λ̄ = πobs (λ).

Proof The proof is similar to the argument in the Appendix A.3.

5.3 Rationalizing other functional forms

We would like to go beyond cross-products. Let us return to the more general form of the

social surplus

Vij(., .) ≡ λijvij(., .),

where vij is a function known to the analyst and the scalar weights λij are unknown to him

(up to scale.)

For any specification of the vij ’s , we can redefine “generalized cross-products” to be

expectations of Eπvij(xi, yj), and our results again apply, with a generalized covariogram

that depends on the specification. A natural question is whether we can estimate the

vij functions, assuming that the observed matching is socially optimal for one particular

specification. This would amount to using the (generalized) algorithm in section 3.1 to

determine the value of t for any given choice of the v’s and then to solve the equation t = 1.

While this is an equation with only one unknown and so it seems unlikely to give much

identifying power, recall that it allowed us to estimate the Λ matrix; so the task may not

be as hopeless at it looks.

A related question is whether there always exists a specification of the v’s that makes

the observed matching optimal. Or, to rephrase it, does assumption (TWI)—along with
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optimality—have any testable implication? We conjecture that the answer is positive, but

we have yet to prove it.

Conclusion

It is a bit early to conclude, but we would like here to point out the strong links between

our theory and the Revealed Preferences principle in utility theory, stemming from Afriat

(1967) and Varian (1982). The key notion is that of consistency with utility maximization,

which we recall here.

Definition 1 (Consistency with utility maximization) We define consumptions xk ∈

IRd, k = 1...n and prices πk ∈ IRd
+ to be consistent with utility maximization if and only if

there exists a concave utility function u and wealths wk such that

xk ∈ arg maxu (x) : x · πk = wk

Equivalently, this holds if and only if there exists scalars λk, k = 1, ..., n and a concave

function v such that λkπk = ∇v (xk), where λk > 0 is to be interpreted as a Lagrange

multiplier in the convex optimization problem above. Introducing Uk = u (xk), we see that

if the latter condition holds true then we have Ul ≤ Uk + λkπk (xl − xk) for all k and l.

Conversely, if this holds, then we can introduce u (x) = mink {Uk − λkπkxk} and it follows

immediately that (xk, πk) are consistent with utility maximization. Hence Afriat’s theorem,

and also Varian’s theorem which can be deduced using the notion of cyclical monotonicity

(cf. e.g. Villani (2003), p. 79). Note that we changed λk into −λk to work with convex

functions instead of concave ones.

Proposition 10 (Afriat; Varian) The following conditions are equivalent:

(i) Quantity-prices (xk, πk) are consistent with utility maximization;

(ii) There are scalars λk < 0, k = 1, ..., n such that
n∑
k=1

d∑
i=1

λkx
i
σ(k)π

i
k
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is maximized over σ ∈ SN for σ = id;

(iii) (Afriat’s theorem) There are scalars λk < 0 and Uk, k = 1, ..., n such that

Ul ≤ Uk − λkπk (xl − xk)

for all k and l;

(iv) (Varian’s theorem) The (xk, πk)’s satisfy the Generalized Axiom of Revealed prefer-

ences (GARP): for any any cyclical relabelling k1, ..., kp (with kp+1 = kp), all the quantities

πki

(
xki+1

− xki

)
are not ≥ 0.

This formulation makes the link with our theory precise: while testing for consis-

tency with utility maximization consists in looking for λk < 0, k = 1, ..., n such that∑n
k=1

∑d
i=1 λkx

i
σ(k)π

i
k is maximized over σ ∈ SN for σ = id, in our problem (with diagonal

social weights) we look for λi, i = 1, ..., d such that
∑n

k=1

∑d
i=1 λix

i
σ(k)y

i
k is maximized over

σ ∈ SN for σ = id.

This analogy implies that our approach also may provide a new way to test for consis-

tency of preferences; we plan to explore this further.
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A Examples and particular cases of interest

A.1 Gaussian distributions

When P = N (0,Σ1) and Q = N (0,Σ2), one has

K (λ) = tr

(√√
Σ1Σ̄2 (λ)

√
Σ1

)
where Σ̄2 (λ) = DλΣ2Dλ with Dλ = diag (λ). This follows from a calculation based on

Rachev and Ruschendorf (1998) I, Ex. 3.2.12. In particular, when d = 2 and P = N (0, I2),

and Q = N

0,

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

, this becomes K (λ) = tr
(√

Σ̄2 (λ)
)

, thus making use

of tr
(√

S
)

=
√
tr (S) + 2

√
detS, we get

K (λ) =
√
σ2

1λ
2
1 + σ2

2λ
2
2 + 2σ1σ2λ1λ2

√
(1− ρ2).

In particular when σ1 = σ2 and ρ = 1, the covariogram is a circle.

We illustrated the Gaussian covariogram in Figure 2 in the case where P1 = N (0, I2)

and P2 = N

0,

2 3

3 5

.

A.2 Multinomial distributions

When the distributions are discrete, as it is the case with a multinomial distribution, we

have seen that the covariogram is a polytope. This was illustrated in Figure 1 in the text.
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A.3 Independent marginals

For simplicity take d = 2, and suppose that P = P1 ⊗ P2, and Q = Q1 ⊗ Q2, that is the

distributions of the various individuals’ characteristics (male or female) are independent.

Let FPi (resp. FQi) be the cumulative distribution functions associated to distribution Pi

(resp. Qi).

Take λ ∈ IR2
+∗. Then by 4, the λ-rationalisable matching are the solutions of constrained

optimization problem

max
(X,Y )∈Γ(P,Q)

E
[
X1Y 1

]
: E

[
X2Y 2

]
≥ c2,

but by independence between the two dimensions, in the optimal coupling the pair
(
X1, Y 1

)
is independent from

(
X2, Y 2

)
, thus the solution to the constrained problem coincides with

the unconstrained one. Thus

C1 = max
(X1,Y 1)∈Γ(P1,Q1)

E
[
X1Y 1

]
=

∫ 1

0
F−1
P1

(u)F−1
Q1

(u) du := C1
max

and a similar result holds for C2. Therefore for any value of λ ∈ IR2
+∗, the optimal cross-

product is given by C (λ) =
(
C1

max, C
2
max

)
. For λ1 > 0 and λ2 < 0, C (λ) =

(
C1

max, C
2
min

)
,

and so on. This is illustrated in Figure 3.

A.4 Maximally dependent marginals

Again, take d = 2, and suppose that P is the distribution of
(
X1 = f1 (U) , X2 = f2 (U)

)
with U ∼ U ([0, 1]) and f1 and f2 two increasing and continuous functions, and similarly,

that Q is the distribution of
(
Y 1 = g1 (V ) , Y 2 = g2 (V )

)
with V ∼ U ([0, 1]) and g1 and

g2 two increasing and continuous functions. Then the cross-product between X1 and Y 1

determines the cross-product between the cross-product between X2 and Y 2, thus

C (λ) = max
(
λ1C

1
min + λ2C

2
min, λ1C

1
max + λ2C

2
max

)
which is illustrated in in Figure 4.
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Figure 3: covariogram when both distributions have independent components. The x (resp.

y) axis measures the cross-product of the first (resp. second) characteristics.
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Figure 4: covariogram when both distributions have maximally dependent components.

The x (resp. y) axis measures the cross-product of the first (resp. second) characteristics.
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