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ABSTRACT 

We develop a method for directly modeling cointegrated multivariate time series that 

are observed in mixed frequencies.  We regard lower-frequency data as regularly (or 

irregularly) missing and treat them with higher-frequency data by adopting a state-

space model.  This utilizes the structure of multivariate data as well as the available 

sample information more fully than the methods of transformation to a single 

frequency, and enables us to estimate parameters including cointegrating vectors and 

the missing observations of low-frequency data and to construct forecasts for future 

values.  For the maximum likelihood estimation of the parameters in the model, we 

use an expectation maximization algorithm based on the state-space representation of 

the error correction model.  The statistical efficiency of the developed method is 

investigated through a Monte Carlo study.  We apply the method to a mixed-

frequency data set that consists of the quarterly real gross domestic product and the 

monthly consumer price index. 
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1. INTRODUCTION 

Multivariate time series that arise in economics and business are often observed in 

mixed frequencies.  For example, data available from the database of the Bureau of 

Economic Analysis, the Bureau of Labor Statistics, and the Bureau of the Census are 

often in mixed frequencies, mostly with quarterly, monthly or weekly sampling 

intervals.  Although cointegration, which represents a long-run equilibrium among the 

components of nonstationary multivariate time series, has been one of the most 

extensively investigated research topics, especially, in economics and business during 

the past two decades since Engle and Granger (1987), studies of cointegration have 

been limited to the case where all the components of a multivariate series are observed 

at the same frequency. 

Data observed in mixed frequencies are usually transformed to a single 

frequency by temporally aggregating higher-frequency data to lower frequencies, or by 

interpolating lower-frequency data to higher frequencies.  However, temporal 

aggregation destroys sample information (Zadrozny 1990).  Granger and Siklos 

(1995) examined the misinterpretation of the long-run component of a time series 

constructed by temporal aggregation.  Marcellino (1999) theoretically derived the 

effects of temporal aggregation on cointegration such as the asymptotic invariance of 

cointegrating (CI) rank and vectors.  However, he illustrated some possibilities of the 

loss of power of cointegration tests due to a decline in the number of available 
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observations.  Haug (2002) showed in Monte Carlo experiments with various 

cointegration tests and data generating processes (DGPs) that these power losses 

indeed occur and assessed their extents in samples of typical size used in empirical 

work.   

For the case of interpolation of mixed-frequency data, Chow and Lin (1971) 

used the conventional regression approach, and Ghysels and Valkanov (2006) used the 

projection of low-frequency data on high-frequency data.  Other researchers, for 

example, Bernanke et al. (1997), Cuche and Hess (2000), and Liu and Hall (2001), 

used the state-space framework suggested by Harvey and Pierse (1984) where 

interpolation is based on univariate regression.  When the goal is to estimate a 

multivariate model for forecasting or other purposes, this kind of interpolation is at 

best an intermediate nuisance and at worst a source of distortion in the data to be used 

for estimation (Zadrozny 1990, p. 2). 

Recently, Mariano and Murasawa (henceforth, MM) (2003, 2004) considered 

multivariate models for constructing a new index of economic indicators using mixed-

frequency data, which overcome the drawbacks of a univariate approach and exploit 

the cross-frequency sample information.  However, they used differenced data instead 

of levels data.  This causes a loss of information on the long-run dynamics among the 

variables. 

In this paper we develop a method for directly modeling the cointegrated 

multivariate time series with mixed-frequency data, which is based on the state-space 

representation of the error correction model (ECM).  We use the state-space 

formulation for mixed-frequency data in our development by fully utilizing the 

structure of multivariate data as well as the available sample information.  For the 

analysis, we exploit an expectation maximization (EM) algorithm.  The method is 
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applied to estimate the parameters and the missing observations of the low-frequency 

variables and to construct forecasts of their future values. 

The structure of the paper is as follows.  In Section 2, we describe preliminary 

concepts for mixed-frequency data and set up the state-space representation for the 

ECM of cointegration.  In Section 3, we develop the procedures for estimating the 

parameters of the cointegrated model using the EM algorithm and discuss initial 

conditions for the procedures.  In Section 4, we comment on smoothing, forecasting, 

logarithmic transformation, and models with different types of deterministic terms.  In 

Section 5, we conduct Monte Carlo experiments for the investigation of the 

performance of the developed method.  In Section 6, we consider a numerical 

example to illustrate the method and we conclude the paper in Section 7. 

 

2. MODEL WITH MIXED-FREQUENCY DATA 

In this section, we define mixed-frequency data and the ECM for multivariate 

cointegrated time series. 

 

2.1 Mixed-frequency data 

We define high-frequency variables as those observed at the shortest sampling interval 

and define low-frequency variables as those observed at longer sampling intervals, 

either as temporal aggregates or as skip samples of their high-frequency values.  A 

variable is skip sampled when, for example, it is generated every month but is sampled 

every third month, say, in the last month of every quarter.  We assume that the 

underlying data generating process of a multivariate time series of mixed-frequency 

data, composed of both the high and the low-frequency variables, operates at the 

highest frequency, as in Zadrozny (1990), Ghysels and Valkanov (2006), and MM 
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(2003, 2004) among others.  All variables are assumed to be produced at the highest 

frequency, but some variables are not observed at the highest frequency.  For example, 

we consider a bivariate time series of the consumer price index (CPI) observed 

monthly and the gross domestic product (GDP) observed quarterly.  CPI is the high-

frequency variable and GDP is the low-frequency variable.  The highest frequency is 

monthly and GDP is in principle ‘produced’ monthly but is observed only quarterly.  

Variables like GDP observed as temporal aggregates are often called flows, while 

variables observed at the high frequency are often called stocks. 

 

2.2 Error correction model and state-space representation  

Let  be an n-dimensional vector autoregressive process of order p, , 

which operates at the highest frequency with CI rank , and consider the 

corresponding error correction form 

tu )(VAR p

h

 , (1) t

p

j
jtjtt uubau ε+ΔΨ+′=Δ ∑

−

=
−−

1

1
1

where a and b are  matrices with hn× nh <<0  and dnh −= , , for 

, are  matrices, and 

jΨ

1,,1 −= pj L nn× tε  is an independent  random 

vector.  We assume that the elements of  are ordered such that the last  

elements are not cointegrated.  This assumption permits the normalization 

),0( ΩnN

tu hnd −=

][ 0 ′′= βhIb  for identification, as in Ahn and Reinsel (1990), where hI  denotes an 

 identity matrix and h h× 0β  is a hd ×  matrix.  The characteristic equation of 

model (1) has exactly  roots equal to one and all other roots are assumed to be 

outside the unit circle, so that  is cointegrated of order (1,1) (Engle and Granger 

1987).   

d

tu

We reorder the elements of  to form tu ),( 21 ′′′= ttt zzz  such that an  vector 11×n
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tz1  corresponds to high-frequency variables and an 12 ×n  vector  corresponds to 

low-frequency variables, where 

tz2

21 nnn += .  For brevity, we assume that the low-

frequency variables are observed as temporal aggregates because the method can be 

easily modified to accommodate the alternative case of skip-sampled data.  The 

reordering implies , where V is an tt Vuz = nn×  permutation matrix.  Substituting 

 with  and pre-multiplying both sides of equation (1) by V, we can rewrite 

model (1) as 

tu tzV 1−

 , (2) t

p

j
jtjtt ezzz +ΔΓ+′=Δ ∑

−

=
−−

1

1
1βα

where Va=α , Vb=β , VV jj ′Ψ=Γ , tt Ve ε= , ),0(~ ΣNet , and VV ′Ω=Σ .  Also, 

note that .  For convenience of estimation, we write VV ′=−1
021 ββ VIV h += , where 

 and  are 1V 2V hn×  and  matrices, such that dn× [ ]21 VVV = .  The VAR(p) 

representation of model (2) is 

 , (3) t

p

j
jtjt ezz +Φ=∑

=
−

1

where 11 Γ+′+=Φ βαnI , 1−Γ−Γ=Φ jjj , for 1,,2 −= pj L , and 1−Γ−=Φ pp . 

In practice, as mentioned above, the low-frequency variables, , are not 

observed directly at the highest frequency, but either as temporally-aggregated flows or 

as skip-sampled stocks.  Flows can be expressed as 

tz2

2 0

v
t jj 2t jy C z −=
=∑ , where v  

denotes the maximum degree of aggregation and the ’s are  diagonal 

indicator matrices with zeros and ones on the principal diagonal.  By adjusting the 

diagonal elements of , Zadrozny (1990) suggested a way to treat a variable which is 

observed directly as a stock, but with a delay. 

jC 22 nn ×

jC

We now construct a state-space representation of model (3).  Let the  state 1×s
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vector , where 1( , , )t t t rx z z − +′ ′= L ′ max( , 1)r p v= +  and s nr=  for .  

Then, we define the state equation, as in Zadrozny (1990), by 

Tt ,,1 L=

 ttt GeFxx += −1 , (4) 

where the initial state, , is assumed to be a normal random vector with mean vector 0x

λ  and  covariance matrix ss× Λ .  Here,  and  denote  and  

matrices defined by 

F G ss× ns×

1 2 r

n n n

n n n

n n n

I O O
F O I O

O O O

Φ Φ Φ⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

L

M M L M

L

,  ,  ⎥
⎦

⎤
⎢
⎣

⎡
=

×− nns

n

O
I

G
)(

nj O=Φ  if pj > , 

where  and  denote  and nO nmO × n n× nm×  zero matrices, respectively. 

Next, assuming no observation errors, we define the measurement equation 

 , (5) t
t

t
t x

H
H

y
y

y ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≡

2

1

2

1

where 

tt zy 11 = , [ ])(1 nsnn OIH −× 111
≡ , 

[ ]2 1 2 1 2 12 0 1n n n n n n rH O C O C O C× × ×≡ L 1− n, and 2jC O=  if vj > . 

The matrix  picks out the high-frequency variables from state vector  and the 

matrix  picks out the low-frequency variables from the state vector as temporal 

aggregates.  We introduce a new series, , which is observed only at lower 

frequencies, in order to deal with the missing observations in .  As in Brockwell 

and Davis (1991), we fill in missing observations of  with random vectors which 

are independent of  and are distributed independently of the parameters in model 

(2).  Accordingly, we modify measurement equation (5) as 

1H tx

2H

+
ty2

ty2

ty2

ty
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 , (6) t
t

nn
t

tt

t
t w

Q
O

x
H
H

y
y

y ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
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⎝

⎛
=⎟⎟

⎠

⎞
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⎝

⎛
≡ ×

+
+

22

1

2

1 21

⎭
⎬
⎫

⎩
⎨
⎧

=
× otherwise

observable is  if

2

22
2

sn

t
t O

yH
H ,  , 

⎭
⎬
⎫

⎩
⎨
⎧

=
otherwise

observable is  if

2

2 2
2

n

tn
t I

yO
Q

and  is an independent random vector distributed .  We also define 

 and 

tw ),0(
22 nn IN

],[ 21 ′′′= tt HHH ],[ 221
′′′= × tnnt QOQ , which will appear in equation (16) and in 

Appendix.  In the implementation, because the realization of  is independent of 

, setting  is the preferred simple choice (Brockwell and Davis 1991; MM 

2003).  Instead of using , a selection matrix may be used for constructing a 

measurement equation in order to control the mixed-frequency data, as in Zadrozny 

(1990). 

tw

ty 0=tw

tw

We note that when the low-frequency variables are stocks, with missing data 

attributable to skip-sampling, we redefine )2,max(pr = , and 

[ ])(2 nsnnnn OIOH −××≡
2212

.  We need 2=r  in order to construct the state equation 

when the autoregressive order is one.  Similar adjustments can be applied to more 

complicated cases, where the low-frequency variables are observed as both stocks and 

flows. 

 

3. MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS 

In this section, we consider maximum likelihood estimation (MLE) of parameters in 

error correction model (2) in the state-space form (4) and (6).  

 

3.1 EM algorithm 

Dempster et al. (1977), Shumway and Stoffer (1982), and Watson and Engle (1983) 
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developed and illustrated the EM algorithm for estimating a model in state-space form, 

when some variables are partly or completely unobserved (latent). 

Let  and  be information sets.  In order 

to develop an EM algorithm for estimating the parameters of the state-space model in 

(4) and (6), we consider several transformations for forming the likelihood function 

with respect to the complete data  and .  Let 

)0;( stxX ts ≤≤= )1;( styY ts ≤≤= ++

TX +
TY

[ ]11 −ΓΓ=Γ pLα , [ ]111
*

−ΓΓ′=Γ pV Lα , 

( 2 )[ ]n n n s nA I I O × −= − , and [ ])(2 nsdOVD −×′= , 

where .  Define 121 −− ′= tt zVDx

h n h n

n n n

n n n

n n n

O O
I I O

B O I I
O O I

β × ×′⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

L

L

M M M L

, *

n n n

n n n

n n n

n n n

I O O
I I O

B O I I
O O I

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

L

L

M M M L

, 

where ),,,( 1111 ′′Δ′Δ′= +−−−− ptttt zzzBx Lβ , , and ),,,( 1111
* ′′Δ′Δ′= +−−−− ptttt zzzxB L B  

and *B  are snph ×−+ })1({  and snp×  matrices.  We consider two 

transformations for forming the likelihood function and estimating Γ , , and Σ 0β . 

First, 

tttptptttt eBxezzzzAx +Γ=+ΔΓ++ΔΓ+′=Δ= −+−−−− 111111 Lβα , (7) 

tptptttt ezzzVzVAx +ΔΓ++ΔΓ+′+′′= +−−−−− 111111120 Lαβα  

ttt exBDx +Γ+′= −− 1
**

10βα  

{ } ttt exBDx +Γ+′⊗= −− 1
**

01 )(vec)( βα , (8) 

because })(vec{ 1010 ′′=′ −− tt DxDx βαβα  and { } )(vec)(})(vec{ 0101 βααβ ′⊗=′′ −− tt DxDx , 

which are obtained using the vectorization rule )(vec)()(vec BACABC ⊗′= , where 
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)(vec ⋅  vectorizes a matrix columnwise from left to right and the symbol  denotes 

the Kronecker product. 

⊗

Then, we express the log-likelihood function as 

)()(
2
1||log

2
1),;(log 0

1
0 λλθ −Λ′−−Λ−= −+ xxYXL TT  

∑
=

−
−

− Γ−Σ′Γ−−Σ−
T

t
tttt BxAxBxAxT

1
1

1
1 )()(

2
1||log

2
, (9) 

or as 

)()(
2
1||log

2
1),;(log 0

1
0 λλθ −Λ′−−Λ−= −+ xxYXL TT  

∑
=

−− ×′′⊗−Γ−−Σ−
T

t
ttt DxxBAxT

1
011

** ])(vec})({[
2
1||log

2
βα  

)](vec})({[ 011
**1 βα ′⊗−Γ−Σ −−

−
ttt DxxBAx , (10) 

where terms that do not contain the parameters, )(vec( 0 ′≡ βθ , , )(vec ′Γ ))(vech ′′Σ , 

are omitted and  vectorizes the lower triangular part of a matrix columnwise.  

Version (9) of the log-likelihood function is used to estimate the “stationary” 

parameters in  and .  Version (10) of the log-likelihood function is used to 

estimate the remaining “nonstationary” parameters in 

)(vech ⋅

Γ Σ

0β .  The distribution of  in 

the measurement equation does not have any effect on equations (9) and (10).  

Because the log likelihood function depends on the unobserved information, , the 

EM algorithm is applicable, conditional on the observed information, .  

Specifically, we define the estimated parameters at iteration 

tw

TX

+
TY

1+l  as the value of θ  

which maximizes 

 { }++= TTTl
l YYXL |),;(logE)|(Q )( θθθ , (11) 

where  denotes estimated )(lθ θ  after l iterations and  denotes the 

conditional expectation with respect to a density containing , given .  

}|{ +⋅ Tl YE

)(lθ +
TY
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Calculating (11) constitutes the expectation step and maximizing (11) with respect to 

θ  constitutes the maximization step.  Using the derivatives of (11) with respect to θ  

which are in Appendix A of Seong et al. (2007), we obtain the following equations for 

updating  at the end of l iterations, )1( +lθ

[ ] { } 11( 1) *( ) * ( ) 1 ( ) ( ) ( ) 1 ( )
11 10 110 ( )l l l lDM D D M A M Bβ α

−−+ −⎡ ⎤′ ′ ′ ′ l l lα α−⎡ ⎤= − Γ Σ Σ⎣ ⎦⎣ ⎦ , (12) 

( )( 1)1(
11

)1()1(
01

)1( −++++ ′′=Γ llll BMBBAM ) , (13) 

( )AMBAAMT lll ′Γ−′=Σ ++−+
10

)1()1(
00

1)1( , (14) 

where, in equation (12), , , and )(lα )(lΣ )*(lΓ  are given by the previous iteration; in 

equation (13), )1( +lB  is given by , according to equation (12); and, in equation 

(14),  is given by equation (13).  In equations (12) to (14), , , , 

and  are given by 

)1(
0
+lβ

)1( +Γ l
00M 01M 10M

11M

(∑∑
=

−−−−
=

+
−− +=′=

T

t

T
kt

T
jt

T
ktjt

T

t
Tktjtljk xxPYxxM

1
,

1
)|(E ), (15) 

for , where  and  are produced by the prediction and updating 

recursions of the Kalman filter.  In Appendix, we adopt the fixed-interval smoothing 

algorithm of De Jong (1989), which avoids inversion of large matrices, and, hence, is 

computationally more efficient than the classical smoothing equations (Durbin and 

Koopman 2001).  We note that the mean vector, 

1,0, =kj T
ktjtP −− ,

T
jtx −

λ , and the covariance matrix, Λ , 

of the initial state vector, , cannot be estimated simultaneously.  Following 

Shumway and Stoffer (1982), we preset the covariance matrix and estimate the mean 

vector as  by maximizing (11). 

0x

Tl x0
)1( =+λ

We summarize the iterative EM procedure as follows:  

(1) Calculate  for  using equations (A.1) to (A.6) in the Appendix, jkM 1,0, =kj
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with the initial values , )0(λ Λ , and . )0(θ

(2) Estimate  and calculate  using equations (12) to (14). Tx0
)1( =λ )1(θ

(3) Iterate on steps (1) and (2) above until the parameter estimates or the likelihood 

values converge.  At each iteration, we calculate the innovations form of the log-

likelihood function (Schweppe 1965), 

∑
=

−+ ′+′−=
T

t
ttt

t
ttT QQHPHYL

1

1 ||log
2
1);(log θ  

1 1 1

1

1 ( ) ( ) (
2

T
t t

t t t t t t t t t t t
t

1)ty H x H P H Q Q y H x+ − − − +

=

′ ′ ′− − + −∑ − , (16) 

and stop when the difference between  and  is 

less than a predetermined small value. 

);(log )1( ++
T

l YL θ );(log )( +
T

l YL θ

The Newton-Raphson (NR) method is known to converge faster, compared with 

the EM.  However, the NR method is more likely to fail because it is very sensitive to 

initial values; see Shumway and Stoffer (1982) for further details.  Thus, we use the 

EM algorithm, especially, because in cointegration with mixed-frequency data initial 

values of parameters are difficult to obtain.  Since it is known that the EM algorithm 

slows down near the maximum, one may switch to the NR method near the maximum 

for faster convergence; see Watson and Engle (1983) and MM (2004). 

 

3.2 Initialization 

To start the EM algorithm with the Kalman filter, we need to specify the initial 

values, , , and .  When the state equation is nonstationary, the 

unconditional distribution of the state vector is not defined.  Usually, the initial 

distribution of  must be specified by a diffuse or noninformative prior because 

genuine prior information is generally not available (Harvey 1991).  Therefore, we set 

 and 

)0(λ Λ )0(θ

0x

0)0( =λ Iδ=Λ , where δ  is a large value, for example, . 810=δ
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Regarding initial values of parameters, we first obtain an estimate of the 

nonstationary parameters by using single-frequency data that are usually obtained by 

transforming the high-frequency variables, , to match the low frequency of .  

Then, we use the relationship between the nonstationary parameters in mixed-

frequency non-temporally-aggregated and single-frequency temporally-aggregated 

models, estimated using mixed- and single-frequency data, in order to obtain an initial 

estimate of the nonstationary parameters in .  For example, see Marcellino 

(1999) and Pons and Sansó (2005) for the explicit formulas for the relationship in 

several cases.  For the remaining stationary parameters, however, it is not easy to 

obtain an explicit formula to describe the relationship between the parameters of 

models of mixed- and single-frequency data.  Therefore, treating the initial estimate 

 as known, and, thus, fixed in equation (2), we obtain initial estimates of the 

stationary parameters,  and 

ty1 ty2

)0(
0β

)0(
0β

)0(Γ )0(Σ , using the iterative EM algorithm. 

In order to prespecify the CI rank in the analysis of cointegration with mixed-

frequency data, we use the fact stated by Marcellino (1999) that the CI rank is invariant 

to temporal aggregation.  Then, we can use the CI rank, obtained by applying the CI 

rank test to the temporally-aggregated single-frequency data.   

We select as “best” the VAR(p) model whose MLE yields the lowest values of 

Akaike’s information criterion (AIC) and Schwartz’s Bayesian information criterion 

(SBC), 

)}dim(2);ˆ(log2{AIC 1 θθ +−= +− YLT T

T

T

, 

}log)dim();ˆ(log2{SBC 1 TYLT θθ +−= +− , 

where log L( ; ) is given by equation (16),  is the MLE of θ̂ +Y θ̂ θ , obtained using the 
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proposed EM algorithm, and )dim(θ  is the dimension of θ . 

 

4. COMMENTS 

One of the important purposes of the paper is to estimate missing or unobserved low-

frequency variables, , which satisfy the structure of the cointegrated multivariate 

time-series model.  This can be done by estimating , together with its covariance 

matrix , using smoothing equations (A.5) and (A.6) in Appendix.  One of the 

advantages of the proposed method is that we can use it to forecast low-frequency 

variables which are generated jointly with variables observed at higher frequencies.  

For example, with quarterly GDP and other monthly variables, we can forecast 

monthly GDP even if GDP is observed only quarterly. 

ty2

T
tx

T
tP

Usually, logarithms of variables are taken before fitting a multivariate time-

series model, especially to stabilize the variances of series.  This creates no 

difficulties for high-frequency series (Harvey and Pierce 1984).  However, for a 

temporally-aggregated low-frequency series, although the sum of the original variables 

is observed, the logarithm of a sum is not equal to the sum of the logarithms.  In such 

a case, we assume that the logarithms of the original variables are integrated of order 1.  

There are three ways to handle the issue on the logarithm transformation.  First, a 

temporally-aggregated variable is treated as the geometric sum (mean) of an 

unobserved high-frequency variable, as in MM (2003, 2004).  Mitchell et al. (2005) 

say that this is a very good first-order approximation in some cases such as constant 

price GDP, although the aggregated variable is the arithmetic sum (mean) under the 

common accounting identity that links high- and low-frequency values.  Second, the 

following first-order Taylor approximation by Aadland (2000), 
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 , (17) 2, 1 2, 1
1 1
log( ) log log( )

v v

t j t j
j j

z v z v− + − +
= =

⎛ ⎞
≅ −⎜ ⎟

⎝ ⎠
∑ ∑ v

can be used to linearize the measurement equation.  Third, a nonlinear state-space 

model with the extended Kalman filter, as in Anderson and Moore (1979, pp. 193-195), 

may be employed, see also Harvey and Pierce (1984). 

We include various combinations of deterministic terms in model (1), as in 

Johansen (1996).  The explicit state-space representations that can accommodate such 

deterministic terms are in Appendix C of Seong et al. (2007). 

 

5. MONTE CARLO EXPERIMENTS 

Monte Carlo experiments are conducted to investigate the performance of the proposed 

method.  The data generating process we consider is similar to the one in Ahn and 

Reinsel (1990), except that we consider a 3-dimensional process, specifically, 

 tttttt ubauuuu εγ +′+=′ΔΔΔ=Δ −11321 ),,( , (18) 

where ),0(i.i.d.~ 3 ΩNtε , for Tt ,,1 L= , and 1γ  denotes an unrestricted constant 

term.  The parameters are set at the following values: 

)3.0,1.0,2.0(),,( 3121111 ′−=′= γγγγ , )4.0,1,6.0(),,( 321 ′=′= aaaa , 

)3,2,1(),,( 321 ′−=′= bbbb  and , 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=Ω

15.15.2
5.195.7
5.25.725

so that  is cointegrated with rank one. tu

For convenience, we assume that permutation matrix  is an identity matrix, 

that is,  and  are not cointegrated.  Then, 

V

tu2 tu3 tt zu =  and the parameters in 

models (17) and (18) are identical.  After generating , we set  and 

, making them high-frequency variables, and, then, generate the low-

tu tt uy 11 =

tt uy 22 =
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frequency variable, , by ty3 231333 −− ++= tttt uuuy , for L,9,6,3=t , which makes 

 a temporally-aggregated flow variable.  We generate 1,000 replications of the 

series for sample sizes  and 

ty3

120=T 240=T , which represent 10 and 20 years of 

monthly data, such that the first 50 values are discarded in order to reduce dependence 

on starting values.  We estimate a VAR(1) with an unrestricted constant. 

Because, to our best knowledge, there is no other method available to analyze 

mixed-frequency data with cointegration, we evaluate the performance of the proposed 

method against the case in which all variables are observed at the highest frequency, 

that is, there are no missing data.  In addition, we compare the interpolation ability of 

the proposed method with that of MM (2004), which does not use long-run information 

but mainly uses short-run dynamics.  We expect our method to perform nearly as well 

with intermittently-missing mixed-frequency data as with complete high-frequency 

data.  The same issue arose in Chen and Zadrozny (1998), where a similar Monte 

Carlo experiment was conducted to evaluate the performance of their method for 

estimating a stationary VAR model using mixed-frequency data, relative to using 

complete high-frequency data. 

The method of Ahn and Reinsel (1990) is used for estimating with the complete 

high-frequency data.  Table 1 contains the simulation result for the performance of the 

proposed method against the complete data case.  We observe that the differences in 

the table are generally fairly small and that the proposed method performs well with 

the mixed-frequency data, compared with the complete data, in terms of biases and 

root mean-squared errors (RMSEs) of estimated parameters.  As expected, the 

proposed method performs worse using mixed-frequency data than using complete 

high-frequency data. 

It is interesting to compare table 1 with tables 2 to 7 in Chen and Zadrozny 
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(1998), which show how MLE and extended Yule-Walker (XYW) parameter estimates 

deteriorate, in terms of RMSE, when going from complete to mixed-frequency data.  

In their table 5, the RMSEs of MLE decline about 44%, whereas the best RMSEs of 

XYW decline about 77% or more.  Consider how the RMSEs change in table 1, for 

’s, ’s, and a b γ ’s when , as we move from using complete data to using 

mixed-frequency data.  The RMSEs increase, ranging between 5.7% (=0.002/0.035) 

for , by 65.1% (=0.151/0.232) for 

240=T

1a 31γ , on average by 40.3%.  We conclude that 

MLEs of parameters in both stationary and nonstationary (cointegrated) VAR 

processes lose a similar amount of RMSE accuracy when going from complete to 

mixed-frequency data.  However, we should be cautious in drawing a general 

conclusion about these numbers because they surely also depend on whether the VAR 

process is stationary or not, on the dimension of the process, and on the sample size. 

For longer series, biases and RMSEs of the proposed method are smaller.  In 

table 1, we also report decline rates of RMSEs for estimated parameters, when T 

doubles from 120 to 240.  For stationary parameters,  and a ijΩ , and nonstationary 

parameters, , the RMSEs are consistent with the respective convergence rates of 

 and .  RMSEs of stationary parameters generally decline by 29% 

(

b

)( 2/1−TOp )( 1−TOp

240/1201−= ) or more when T  doubles from 120 to 240 and RMSEs of 

nonstationary parameters generally decline by 50% ( 240/1201−= ) or more when T  

doubles.  However, changes in the RMSEs of stationary parameters, γ , are 

ambiguous, because their RMSEs decline faster than is predicted for stationary 

parameters but slower than is predicted for nonstationary parameters.  Most 

importantly, this also occurs when we apply the method of Johansen (1996) or Ahn and 

Reinsel (1990) to the analysis of complete data and the RMSEs of the stationary 
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parameters, γ , do not decline more than those of the nonstationary parameters.  

Since the parameters in the vector error correction model can not be estimated 

using the method in MM (2004), we compare our method with MM’s through the 

interpolation capabilities.  The method of MM (2004) is run by their Ox program 

available on the website (www.eco.osakafu-u.ac.jp/~murasawa).  Since the model of 

the first differenced series generated by (18) is a non-invertible vector autoregressive 

moving average process of order (1,1) or VARMA(1,1), we fit a VAR(2) as an 

approximation to this VARMA(1,1) for the investigation of the performances of MM. 

Figures 1 and 2 show RMSEs of estimates of missing values of , 

, when  and 240, respectively.  Four outlying values in starting 

and ending points are omitted, because they are spuriously large due to endpoint 

effects, which arise as a result of the backward smoothing recursions (A.3) to (A.6), 

with  and  being a sort of initialization.   

ty3

L,9,6,3≠t 120T =

01 =+Tr 01 =+TR

As noted in the figures, the average of the RMSE of the proposed method is 

about 39% of that of MM’s for both sample sizes considered.  Therefore, the 

proposed method is better in terms of interpolation capability.  We note that, from 

Figure 1 and 2, as T doubles from 120 to 240, the RMSEs decline by 8.70% and 7.97% 

in the proposed method and MM’s, respectively.  This indicates that the RMSEs of 

the estimates of the missing values may decline more slowly than the rate of 

. )( 2/1−TOp

 

6. EXAMPLES 

We illustrate the proposed method using real mixed-frequency U.S. data of monthly 

CPI and quarterly real GDP, from December 1959 to December 2003, which comprises 
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176 quarters or 529 months of observations.  The CPI and GDP data are from the 

Bureau of Labor Statistics (www.bls.gov) and from the Bureau of Economic Analysis 

(www.bea.gov), are seasonally adjusted, have a base CPI value of 100 in 1982-1984, 

and have a unit of GDP in billions of chained 2000 dollars.  The original data, 

denoted  and  in month t, were transformed to  and  by taking 

natural logs and subtracting from them the natural logs at the starting dates, as 

tCPI tGDP tcpi tgdp

 . (19) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

)log()log(
)log()log(

12:1959

12:1959

GDPGDP
CPICPI

gdp
cpi

y
t

t

t

t
t

Henceforth, the lower-case variable names, cpi and gdp, will refer to these 

transformations of CPI and GDP. 

As mentioned in section 3.2, we first estimate the CI rank and the CI vector by 

using a quarterly single-frequency sample, obtained by picking one monthly value of 

cpi per quarter and keeping quarterly gdp as is (we call this “skip-sampling”).  The 

quarterly single-frequency data indicated that the estimated model may have a constant 

term.  The model selection criteria, minimum AIC and SBC, both indicated choosing 

a VAR(4) model.  Then, applying Johansen’s trace test to the VAR(4) model, 

estimated using the single-frequency data, we obtained a p-value less than 0.001, 

which indicated a CI rank of one.  The corresponding estimate of the CI vector was 

.  For the mixed-frequency observations on (1, 2.063)′− ),( ′= ttt gdpcpiy , we 

obtained  as the estimate of the cointegrating vector by using the 

relationship in Pons and Sansó (2005), which we could because GDP is temporally 

aggregated of order 3. 

(1, 6.189)′−

We used minimum AIC and SBC criteria to select the best monthly (highest 

frequency) model, and chose the VAR(4) model 
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( ) 1 1
0.0900 0.0005 0.4561 0.0008

1, 5.0580
0.3434 0.0018 0.0993 0.9010t t ty y y− −

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
Δ = + − + Δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

2 3
0.2664 0.0054 0.0600 0.0012
0.0066 0.2126 0.1575 0.0235t ty y tε− −
⎛ ⎞ ⎛ ⎞

+ Δ +⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠
Δ + , 

0.0432 0.0052
ˆvar( )

0.0052 0.0663tε
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. 

as the best VAR(p) model.  For this model, we computed monthly smoothed estimates 

of  and monthly forecasts of  and . tgdp tcpi tgdp

Table 2 shows monthly smoothed estimates of , from 2003:1 to 2003:12, as 

examples of monthly smoothed estimates of  in the sample period.  The 

estimates are of high-frequency monthly disaggregated  and of low-frequency 

quarterly aggregated  for 2003.  Tables 6 and 7 state out-of-sample (that is, out 

of model estimation sample) forecasts of  and  for 2004 and compare these 

with true values.  The tables show smaller forecast errors when using mixed-

frequency data than when using single-frequency data.  Specifically, the absolute 

values of forecast errors are smaller by about 7% and 82% on average. 

tgdp

tgdp

tgdp

tgdp

tcpi tgdp

 

8. CONCLUSION 

We have developed and illustrated a method, for estimating a multivariate cointegrated 

VAR model with mixed-frequency time-series data, by using a state-space 

representation of an error correction model.  The method allows us not only to 

estimate such a model using mixed-frequency data, but also to estimate missing or 

unobserved high-frequency values of the low-frequency variables.  Monte Carlo 

experiments, applied to mixed-frequency data, with missing observations, and to 

single-frequency data, with complete observations, indicate that the proposed method 

performs well with missing data due to mixed frequencies. 
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APPENDIX 

Let ,  and , where 

 and  denote the conditional expectation and conditional 

covariance with respect to the density based on . 

)|(E += stl
s
t Yxx )|(cov += stl

s
t YxP )|,(cov 11,

+
−− = sttl

s
tt YxxP

)|(E +⋅ sl Y )|(cov +⋅ sl Y

)(lθ
We calculate the prediction and updating recursions using the following 

equations (for example, Shumway and Stoffer 1982).  For Tt ,,1 L= , 

1
1

1 −
−

− = t
t

t
t Fxx ,  , (A.1) GGFFPP t

t
t

t ′+′= −
−

− 1
1

1

)( 11 −+− −+= t
tttt

t
t

t
t xHyKxx ,  , (A.2) 11 −− −= t

ttt
t

t
t

t PHKPP

where .  We start iterations (A.1) and (A.2) by setting 

 and .  In order to calculate ,  and  using equations 

(A.1) and (A.2), for , we iterate over the backwards recursions 

111 )( −−− ′+′′= ttt
t

ttt
t

tt QQHPHHPK

λ=0
0x Λ=0

0P T
tx T

tP T
ttP 1, −

1,, LTt =

1
111 )()( +
−+−− ′+−′+′′= tt

t
tttttt

t
tttt rLxHyQQHPHHr  (A.3) 

ttttttt
t

tttt LRLHQQHPHHR 1
11 )( +

−− ′+′+′′=  (A.4) 
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where , , and 01 =+Tr 01 =+TR )( ttst HKIFL −= .  Following Durbin and Koopman 
(2001), we obtain the smoothing equations 

t
t

t
t
t

T
t rPxx 11 −− += ,  , (A.5) 111 −−− −= t

tt
t

t
t

t
T

t PRPPP

for , and Tt ,,1 L=

1
11,1 )( −
+++ −= t

ttt
t

ts
T

tt PLRPIP , (A.6) 

for . 1,,1 −= Tt L
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Table 1.  Performance of EM algorithm in complete versus mixed-frequency data and 
decline rates of RMSE as  goes from 120 to 240 T

 120=T  240=T  Decline rate 

 
Complete 

data 

Mixed-
freq. 
data 

Complete 
data 

Mixed- 
freq.  
data 

 
 

Complete 
data 

Mixed- 
freq.  
data 

6.01 =a  Mean 0.585 0.578 0.593 0.588   
 RMSE 0.049 0.056 0.035 0.037 29% 34% 

12 =a  Mean 1.007 0.995 1.002 0.993   
 RMSE 0.032 0.040 0.020 0.025 38% 38% 

4.03 =a  Mean 0.399 0.396 0.399 0.397   
 RMSE 0.011 0.016 0.007 0.010 36% 38% 

21 −=b  Mean -1.999 -1.990 -2.001 -2.001   
 RMSE 0.030 0.050 0.011 0.015 63% 70% 

32 =b  Mean 2.997 2.980 3.002 3.003   
 RMSE 0.066 0.112 0.023 0.033 65% 71% 

2.011 −=γ  Mean -0.148 -0.199 -0.203 -0.276   
 RMSE 0.860 1.650 0.466 0.665 46% 60% 

1.021 =γ  Mean 0.114 0.019 0.071 -0.052   
 RMSE 1.229 2.652 0.590 0.953 52% 64% 

3.031 =γ  Mean 0.314 0.271 0.294 0.240   
 RMSE 0.480 1.065 0.232 0.383 52% 64% 

2511 =Ω  Mean 24.470 25.891 24.843 25.483   
 RMSE 3.114 3.874 2.240 2.537 28% 35% 

5.712 =Ω  Mean 7.374 9.816 7.469 8.642   
 RMSE 1.508 3.999 1.074 2.226 29% 44% 

5.213 =Ω  Mean 2.461 3.773 2.486 3.090   
 RMSE 0.511 2.175 0.352 1.173 31% 46% 

922 =Ω  Mean 8.806 12.950 8.931 11.063   
 RMSE 1.177 5.957 0.863 3.352 27% 44% 

5.123 =Ω  Mean 1.461 3.590 1.474 2.572   
 RMSE 0.307 3.034 0.216 1.692 30% 44% 

133 =Ω  Mean 0.976 1.931 0.984 1.461   
 RMSE 0.132 1.400 0.092 0.758 30% 46% 
Note:  Decline rate = 1 – (RMSE for T=240) / (RMSE for T=120)
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Table 2.  Monthly smoothed estimates of in-sample quarterly , 2003:1 to 
2003:12 

tgdp

Year: 
month 

Observed 
Temp. 
agg. 

Skip-
sampled 

Year: 
month 

Observed
Temp. 
agg. 

Skip-
sampled 

2003:1  141.58 141.67 2003:7  143.65 144.40 
2003:2  141.81 142.11 2003:8  144.20 144.71 
2003:3 141.96 141.96 142.12 2003:9 144.76 144.76 145.16 
2003:4  142.20 142.37 2003:10  145.06 145.32 
2003:5  142.52 143.07 2003:11  145.40 145.72 
2003:6 142.97 142.97 143.48 2003:12 145.78 145.78 146.30 

Note: Reported “aggregated” and “skip-sampled”  in columns 3 and 4, 
respectively, reflect quarterly sums of monthly values ending in the indicated month 
and monthly values for that month multiplied by three (in order to be in quarterly form 
comparable to observed quarterly  in column 2). 

tgdp

tgdp
 

Table 3.  Monthly out-of-sample forecasts of  tcpi

 Single-frequency Mixed-frequency 
Year: month Observed 

 Forecast Error Forecast Error 
2004:1 184.39    184.00 0.39 
2004:2 184.71    184.13 0.58 
2004:3 185.14  184.05 1.08 184.24 0.90 
2004:4 185.35    184.39 0.96 
2004:5 185.94    184.51 1.43 
2004:6 186.20  184.64 1.56 184.65 1.55 
2004:7 186.15    184.79 1.36 
2004:8 186.20    184.93 1.27 
2004:9 186.36  185.01 1.35 185.07 1.29 
2004:10 186.94    185.21 1.73 
2004:11 187.20    185.35 1.85 
2004:12 187.20  185.39 1.81 185.49 1.71 

Note: “Out-of-sample” means for months beyond earlier months, from 1959:12 to 
2003:12, used to estimate the model which was used to produce the forecasts. 
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Table 4.  Monthly out-of-sample forecasts of quarterly  tgdp

 Single-frequency Mixed-frequency 
Year: 
month 

Observed 
 Forecast Error 

Forecast 
Low 
Freq. 

Error 
Forecast 

High 
Freq. 

2004:1      146.133  146.376 
2004:2      146.515  146.868 
2004:3 146.88  146.51 0.37  146.775 0.10 147.081 
2004:4      147.139  147.468 
2004:5      147.431  147.744 
2004:6 147.69  147.43 0.26  147.767 -0.08 148.089 
2004:7      148.074  148.389 
2004:8      148.398  148.716 
2004:9 148.67  148.17 0.50  148.71 -0.04 149.025 
2004:10      149.028  149.343 
2004:11      149.34  149.652 
2004:12 149.61  148.82 0.79  149.654 -0.05 149.967 

Note: Same as in Table 3.
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Figure 1.  RMSEs of estimated , when ty3 120T =  
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Note: The plus signs and asterisk plot the RMSEs by MM (2004) and the proposed EM, 
respectively.  The dotted lines denote average values of the corresponding RMSEs. 

 

Figure 2.  RMSEs of estimated , when ty3 240T =  
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Note: Same as in Figure 1. 
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