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1 Introduction

We propose a new mechanism—based on learning from prices—that delivers expectations-

driven economic fluctuations without relying on any source of extrinsic noise. We show that

when consumers learn from the prices of the goods they consume, higher prices can lead con-

sumers to become unduly optimistic about their economic prospects. Initial optimism causes

consumers to demand more goods, further increasing prices beyond their full-information

level. The self-reinforcing nature of this feedback loop leads to equilibria in which small

shocks to supply drive large changes in beliefs and induce the positive price-quantity co-

movement typically associated with demand shocks. We show that such equilibria can occur

in a standard economic environment and provide a rich set of testable implications for the

study of business cycles.

The mechanism of this paper offers a resolution to a longstanding challenge for macroe-

conomic theory: how to rationalize large fluctuations in economic outcomes with the small

measured volatility of total factor productivity and other aggregate fundamentals that may

drive these outcomes. Our analysis unifies two competing approaches to resolving this prob-

lem. First, it shares the insight of the recent noise-shock and sentiment literature, which

shows that fluctuations may be driven by expectational errors that are correlated across

agents (Lorenzoni, 2009; Angeletos and La’O, 2013; Benhabib et al., 2015). Second, it shares

the focus on amplification with studies of aggregate transmission mechanisms that lead oth-

erwise modest economic shocks to have large aggregate consequences (Kiyotaki and Moore,

1997; Bernanke et al., 1999; Brunnermeier and Sannikov, 2014). In our environment, ex-

pectational errors originate with fundamental shocks and are amplified by agents’ inferences

using endogenous price signals.

We begin our analysis with a static microfounded economy inspired by the large family

metaphor introduced by Lucas (1980). The economy is divided into islands, each of which

is inhabited by three types of agents—producers, workers, and shoppers—who belong to the

same representative family. The utility of the family is perturbed by island-specific preference

shocks that shift the relative importance of each island’s contribution to family well-being,

while producers are subject to a common (aggregate) productivity shock. Producers and
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workers behave as if they had full information. Producers produce a local consumption good

using local labor and a tradable endowment good. Workers supply labor according to the

marginal disutility of labor, embedding the local preference shock in the equilibrium local

wage. The choices of producers and workers combine to generate a price for the local good

that reflects both exogenous shocks—one idiosyncratic, one aggregate—and the price of the

endowment good, which is endogenous to the equilibrium actions of all agents in the economy.

For their part, shoppers do not observe the preference shock on their own island when they

shop for the local consumption good. They are therefore uncertain about the marginal utility

contributed to the household by consuming the local good and seek to infer this utility from

the good’s equilibrium price. A high local price could be a signal of high marginal utility

of the local good or it could reflect a change in aggregate productivity, which plays the

role of noise in the shopper’s inference. If productivity shocks do not move prices much,

rational shoppers attribute price increases primarily to high marginal utility of their variety,

leading price increases to drive demand up. Since the average price level reflects productivity

conditions, however, aggregate productivity shocks shift the average beliefs of shoppers about

local conditions. The aggregate supply shock can thus coordinate an expectations-driven

increase (or decrease) in demand across islands. In general equilibrium, the aggregate increase

in demand raises the price of the endowment good, which in turn further pushes up the price of

local goods, reinforcing shoppers’ initial mistaken inference. In short, learning through prices

leads to productivity-driven shifts in demand, while the feedback of aggregate conditions to

local prices offers the potential for a strong amplification mechanism.

We next characterize equilibrium in the economy, describing cases with both unique

and multiple equilibria. Under most circumstances, the informational feedbacks described

above are reinforcing : The volatility of beliefs relative to fundamentals grows as fundamental

volatility falls. Feedbacks are reinforcing because lowering the variance of aggregate shocks

leads, ceteris paribus, to an increase in the precision of local price signals, which in turn

causes agents to increase the inference weights they place on those signals. Higher weights

lead to larger fluctuations in beliefs for similarly sized realizations of the productivity shock.

When the local consumption price depends strongly enough on aggregate conditions,

the feedback of actions into beliefs leads some equilibria to exhibit nontrivial aggregate
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fluctuations, even in the limit of arbitrarily small aggregate productivity shocks. To an

econometrician, the fluctuations emerging at the limit of no aggregate shocks would appear

as shocks to sentiments, but the origin of sentiment is different from that described by

Angeletos and La’O (2013) or Benhabib et al. (2015).1 First, sentiments emerge in our

model as a case of extreme sensitivity to fundamental shocks, rather than as a response to

extrinsic randomness. Second, our model demonstrates how the price system leads markets to

endogenously coordinate on this particular shock to drive sentiments, rather than assuming

coordination on the shock from the outset.

In addition to providing a novel foundation for sentiment shocks, our model exhibits

several qualitative features that are attractive for business cycle analysis. In particular,

we show that all the equilibria in our economy—not only limit cases with sentiment-like

equilibria—feature positive price-quantity comovement in response to sufficiently small pro-

ductivity shocks. When the aggregate shock in the price signal is small, the informational

role of prices dominates their allocative role, so that agents react to prices more for what

they mean than for the costs they impose: Higher prices lead to higher expected marginal

utility, increasing quantity demanded by more than higher costs reduce it. When aggregate

productivity shocks are small, the balance of these forces causes the aggregate demand sched-

ule to become upward sloping, generating positive price-quantity comovements. Our static

mechanism provides one alternative to the dynamic mechanism of Lorenzoni (2009), which

also links productivity shocks with changes in expectations and demand-driven fluctuations,

but relies on extrinsic shocks to information.

After establishing the key features of our model of price-driven amplification, we go on to

demonstrate several important implications regarding the effects of noisy public information.

We show that public information, which might be expected to prevent agents from making the

correlated errors associated with sentiments, actually facilitates the coordination failure that

generates these fluctuations. In particular, adding an exogenous public signal exacerbates the

informational feedback channel, making demand-driven fluctuations more likely rather than

less. Moreover, whereas in the baseline model aggregate expectations are perfectly correlated

1Indeed, we show that these limit equilibria have exactly the same stochastic properties as the equilibrium
documented by Benhabib et al. (2015).
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with aggregate fundamentals, the additional public signal shifts the coordination of beliefs

toward the noise in the signal. In this case, the economy appears to be driven by two types

of shocks: one that reflects supply-side conditions, originating in the predicted component of

productivity, and one that reflects demand conditions, originating in the combination of noise

and unpredicted productivity shocks. Overall volatility in this case can rise or fall with an

increase in the precision of public information, and the comovement of prices and quantities

takes on intermediate values.

We discuss several extensions that demonstrate the robustness of the basic insight. First,

we show how preferences—specifically, concavity in the disutility of labor—can serve to in-

crease the likelihood that strong informational amplification will arise in equilibrium. Sec-

ond, we show that a similar characterization of equilibria obtains when, instead of a common

productivity shock, we introduce correlation in preference shocks. Indeed, the aggregate con-

sequences of the price-feedback mechanism arise in our economy whenever any fundamental

shock has an aggregate component. Lastly, we show that while high prices do indeed spur to-

tal demand, the model need not imply the existence of a positive price-quantity relationship

at the good level.

One argument favoring recent models of sentiments, rather than traditional sunspot mod-

els of “animal spirits,” is that the existence of sunspot equilibria typically relies on non-

convexities in the payoff structure of private agents, which often lead these equilibria to fail

standard tests of equilibrium stability.2 We therefore conclude by examining the stability

properties of the equilibria we have emphasized. To do this, we consider two equilibrium se-

lection techniques, higher-order belief stability and adaptive learnability. We show that the

limiting sentiment equilibria do not survive either of these tests, while the limiting sentiment-

free equilibria do. Outside of the limit, however, equilibria with strong informational feed-

backs, and positive comovement of price and quantity, can be stable.

In addition to the sentiment literature cited above, this paper is related to a long strand

of work studying sunspot fluctuations (see Azariadis, 1981; Cass and Shell, 1983; Cooper and

2See Guesnerie (2005) and Evans and Honkapohja (2001). A notable exception is Woodford (1990), who
shows the existence of adaptively learnable sunspots; for a comprehensive discussion, see also Evans and
McGough (2011). Examples of stability under higher-order belief dynamics are found by Desgranges and
Negroni (2003).
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John, 1988; and Benhabib and Farmer, 1994, among others.) Particularly related is Manuelli

and Peck (1992), who describe cases where small changes in exogenous endowments lead to

sunspot-like fluctuations in overlapping generations models. This paper also belongs to a

long literature that studies coordination games with incomplete information. Amador and

Weill (2010), Manzano and Vives (2011), and Vives (2012) all consider imperfect informa-

tion models in which the endogeneity of price signals plays an important role, including in

generating multiple equilibria.3 Gaballo (2015) shows that information transmitted by prices

can generate learnable dispersed-information equilibria in the limit of zero cross-sectional

variance of fundamentals, for cases in which a distinct non-learnable perfect-information

equilibrium also exists. Recent work by Bergemann and Morris (2013) characterizes the

full set of incomplete-information equilibria in similar coordination games. Related work by

Bergemann et al. (2015) studies the exogenous information structures that give rise to maxi-

mal aggregate volatility, and the extrema they find are typically achieved by the endogenous

signal structures considered here. Recent studies by Hassan and Mertens (2011, 2014) have

shown that arbitrarily small deviations from rational expectations can generate nontrivial

aggregate consequences, in a manner that resembles the multiplier effect that we find.

2 Amplification Through Learning

2.1 A microfounded model

In this section, we develop a microfounded economy that endogenously generates the infor-

mation structure we wish to study. In the microfounded economy, all shocks are fundamental

and all signals are derived as endogenous outcomes of competitive markets.

Preferences and technology

To model heterogeneity of information, we employ the “family” metaphor first introduced by

Lucas (1980) and more recently adopted by Amador and Weill (2010) and Angeletos and La’O

(2010), among others. The economy is inhabited by a representative price-taking household

3The literature on price revelation in auction markets following Milgrom (1981) also features a dual
informational/allocative role for prices. For recent examples, see Rostek and Weretka (2012); Lauermann
et al. (2012); Atakan and Ekmekci (2014).

5



composed of a continuum of members. Each member can be a “shopper,” a “producer,” or

a “worker.” Members are evenly distributed across islands indexed by i ∈ [0, 1]. On each

island i, a representative worker chooses how much labor of type i to supply; a representative

producer transforms labor of type i along with a tradable endowment input good into a local

consumption good of variety i; and a representative shopper uses household budget resources

to buy consumption goods of variety i, which are finally consumed by the household.

The utility function of the family is:∫
eµi (logCi − φNi) di, (1)

where Ci and Ni denote, respectively, consumption and labor of variety i, φ is a positive

constant, and eµi is an island-specific preference shock with µi ∼ N(0, σµ) independently

distributed across islands. The preference shock is meant to capture heterogeneity in the

value of each island business (variety) in terms of overall utility of the household. The

household is subject to the following budget constraint:∫
PiCidi = QZ +

∫
WiNidi+

∫
Πidi, (2)

where Pi is the price of the good i, Wi is the nominal wage of labor of type i, Πi is the profit

in island i, and Q is the price of the endowment good used in production, which is available

in a fixed supply Z and trades freely across islands.4

The tradable endowment good is combined with island-specific labor to produce the final

good, Ci, according to the technology,

Ci = Nγ
i

(
e−ζZ(i)

)1−γ
, (3)

with γ ∈ (0, 1), where Z(i) denotes the quantity of the endowment good used in production

of the consumption good i and e−ζ is an aggregate productivity shock distributed according

to ζ ∼ N(0, σζ). Note that the sign convention we employ implies that a positive value for

4The endowment good would naturally map to the capital stock in a dynamic model. Our mechanism
requires only the existence of some portion of inputs whose aggregate supply is predetermined within the
period.
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ζ corresponds to a negative productivity shock. Finally, market clearing requires∫
Z(i)di = Z.

For ease of exposition, we assume that workers and producers have full information but

shoppers do not. In particular, shoppers must infer local conditions—the local preference

shock—based on their observation of the price of the local consumption good.5 Moreover, as

in Angeletos and La’O (2013), we normalize the value of the Lagrange multiplier associated

with the budget constraint of the household to serve as a numeraire.6 With these assumptions,

we can write the maximization problems of the worker, the producer, and the shopper in

island i as follows:

worker : max
Ni

WiNi − eµiφNi, (4)

producer : max
Ni,Z(i)

PiN
γ
i

(
e−ζZ(i)

)1−γ −WiNi −QZ(i), (5)

shopper : max
Ci

E[eµi |Pi] logCi − PiCi. (6)

subject to the budget constraint (2).

The shopper does not know µi, which is an exogenous island-specific disturbance. Mean-

while, the price of her good, Pi, depends on both local conditions and the price of the aggre-

gate tradable input, Q. This price, in turn, depends on the total demand for the endowment

and is the only market link across islands: All other prices and quantities are island-specific.

Equilibria with learning from prices

The definition of equilibrium is formally given by the following.

Definition 1. For a given realization of {µi}10 and ζ, a rational expectations equilibrium is

a collection of prices {{Pi,Wi}10, Q} and quantities {Ni, Ci, Z(i)}10 such that agents’ choices

are optimal given the prices they observe, and markets clear.

5In fact, if we assumed—as we do for shoppers—that producers and workers observe only the actual or
shadow prices of the resources they use, then these agents would behave in equilibrium as if they held perfect
information. We show this in the appendix.

6In this case, we could have equivalently fixed the average wage to one, as do Benhabib et al. (2015). In
the appendix, we show that our normalization is equivalent to fixing a monetary numeraire, which is the
typical approach in the DSGE literature: Our economy can be seen as the “cashless” limit of a monetary
economy. Alternatively, we could have obtained the same result in an i.i.d. dynamic economy by allowing
the household to trade a nominal bond in zero net supply and ruling out bubbles.
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The first-order conditions of the family members’ problems are:

E[eµi |Pi] = CiPi, (7)

Wi = eµiφ, (8)

Q = (1− γ)PiN
γ
i Z
−γ
(i) e

−(1−γ)ζ , (9)

Wi = γPiN
γ−1
i Z1−γ

(i) e−(1−γ)ζ, (10)

Letting x ≡ log(X/X̄) for any level variable X, the full set of equilibrium conditions of the

economy can be written in terms of log-deviations of each variable from its steady-state value

X̄. Combining the log-linear version of (9) and (10), we obtain the standard result,

pi = γwi + (1− γ)(q + ζ), (11)

which states that the equilibrium price of the local good is a linear combination of the costs

of factor inputs, corrected for productivity, with weights according to the share of that input

in production.

From equation (8), it follows that wi = µi, i.e., the wage is a direct measure of the

island-specific preference shock. Combining the optimality condition for z in (9) with the

production function in (3), it is possible to show that q = pi + ci − z(i). Then, using the

log-linear version of shopper optimality in (7) and exploiting the market-clearing condition,∫
z(i)di = 0, we have

q =

∫
E[µi|pi]di. (12)

Equation (12) states that fluctuations in the price of the endowment are driven only by the

correlated component of shoppers’ expectations about their own local conditions.

We can therefore rewrite the marginal cost expression in (11) as

pi = γµi + (1− γ)

(∫
E[µi|pi]di+ ζ

)
. (13)

The signal structure implied by this final equation captures the endogenous feedback effect of

inference from prices back into prices, and it is on this structure that we focus our subsequent

analysis.
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Before proceeding to an analytical characterization, it is helpful to spell out the economic

intuition behind the inference problem being solved by shoppers. When shoppers see the

equilibrium price of their good fluctuating, they cannot determine the extent to which the

change is due to island-specific rather than economy-wide factors. From equation (13), it is

clear that an increase in price can be triggered by local factors—that is, by an increase in

the local wage—in which case the higher price indicates an increase in the marginal value of

the local variety. Nevertheless, the same increase in price also could be driven by aggregate

factors, either an increase in the price of the endowment or a decrease in aggregate produc-

tivity, that are not related to local conditions. Shoppers’ confusion about these sources of

price fluctuations means that a price increase driven by a small negative productivity shock is

at least partially interpreted by shoppers on each island as a positive local preference shock,

thereby potentially triggering an increase in demand for all local final goods. Higher demand

for final goods leads to higher demand for the inelastically supplied input good, raising its

price, which then feeds back and is reflected again in final good prices. The fact that shoppers

extract information from local prices thus amplifies the volatility of the endowment good’s

price, making shoppers’ equilibrium inference worse.

The following proposition provides a characterization of equilibrium in terms of the profile

of expectations, so that it will be easy to map the outcomes of the inference problem to the

equilibria of the economy.

Characterization of the equilibrium. An equilibrium is characterized by a profile of

shoppers’ expectation {E[µi|pi]}1i=0 so that, given (12), in each island i ∈ (0, 1) we have

pi = γµi + (1− γ) (q + ζ) , (14)

ci = E[µi|pi]− γµi − (1− γ) (q + ζ) , (15)

wi = µi (16)

ni = E[µi|pi]− µi, (17)

z(i) = E[µi|pi]− q. (18)

A rational expectations equilibrium is one for which shoppers’ expectations, E[µi|pi], are

rational.

Proof. Derivations are provided in Appendix A.2.
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It is easy to check that, when shoppers have perfect information, price and quantity move

in opposite directions.7 In particular, a positive productivity shock—by our convention, a

negative value for ζ—produces a typical-looking supply-driven fluctuation: Total production

goes up and the average price level falls.

2.2 Inference with endogenous signals

In this section, we analyze the abstract signal extraction problem created by the informa-

tion structure microfounded above. We show how to solve the shoppers’ inference problem,

highlighting the strategic interaction engendered by the endogeneity of the price signal. In

particular, we demonstrate that informational feedback can generate amplification of fun-

damental shocks, which in some cases is strong enough to deliver nontrivial responses to

vanishingly small shocks.

Best individual weight function

Given her price signal, pi, which depends on the aggregate expectation, shopper i must

infer µi, the marginal utility of her consumption type. The key feature of the resulting signal

extraction problem is that the precision of the signal depends on the nature of average actions

across the population and, therefore, on the average reaction of shoppers to their own price

signals. A rational expectations equilibrium is therefore a situation in which the individual

reaction to the signal is consistent with its actual precision, i.e., is an optimal response to

the average reaction of others.

We now characterize the equilibria of the economy. Since we assume that all stochas-

tic elements are normal, the optimal forecasting strategy is linear. As a consequence, the

individual expectation is linear in pi and can be written as

E[µi|pi] = ai

(
γεi + (1− γ)

(∫
E[µi|pi]di+ ζ

))
, (19)

where ai is the coefficient, determined prior to the realization of shocks, which measures the

strength of the reaction of shopper i’s beliefs to the signal she will receive. Since the signal is

ex ante identical for all shoppers, each uses a similar strategy, and we can recover the average

7Substitute E[µi|pi] with µi, substitute (14) into (15), and take the integral on both sides to get c = −p.
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expectation by integrating across the population:∫
E[µi|pi]di = a (1− γ)

(∫
E[µi|pi]di+ ζ

)
, (20)

with a ≡
∫
aidi denoting the average weight applied to the signal. Solving the expression

above for the average expectation yields∫
E[µi|pi]di =

a (1− γ)

1− a (1− γ)
ζ, (21)

which is a nonlinear function of the average weight. Importantly, this function features a

singularity at the point 1/(1 − γ). When a < 1/(1 − γ), the average expectation comoves

with the productivity shock and the opposite holds when a > 1/(1− γ).

The variance of the aggregate expectation—equivalently, of the endowment price—is given

by

σ2
q(a) =

(
a (1− γ)

1− a (1− γ)

)2

σ2, (22)

where σ2
q ≡ var(q)/σ2

ε and σ2 ≡ σ2
ζ/σ

2
ε are the variances of the aggregate expectation and the

aggregate shock, respectively, once each is normalized by the variance of the idiosyncratic

fundamental.

Substituting the average expectation in (21) into the price signal described in equation

(13), we get an expression for the local price exclusively in terms of the idiosyncratic and

aggregate shocks:

pi = γεi +
1− γ

1− a (1− γ)
ζ, (23)

whose precision with regard to εi is given by

τ(a) =

(
γ (1− a (1− γ))

(1− γ)σ

)2

. (24)

We are now ready to compute the shopper’s optimal inference, taking the average weight

of other shoppers as given. We seek an ai such that E[pi(εi − aipi)] = 0, i.e., the covariance

between the signal and forecast error is zero in expectation. This condition implies that

information is used optimally. The best individual weight is given by

ai(a) =
1

γ

(
τ(a)

1 + τ(a)

)
. (25)
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Given the linear-quadratic environment, we can interpret ai(a) in a game-theoretic fashion

as an individual best reply to the profile of others’ actions summarized by a sufficient statistic

a. To be precise, every ai is associated with one and only one contingent shopping strategy

that describes the conditional expectation E[µi|pi] = aipi of shopper i, where pi identifies a

set of states of the world indistinguishable to the shopper i.

Equilibria

Given that agents face an information structure with the same stochastic properties, a ratio-

nal expectations equilibrium must be symmetric. This last requirement completes our notion

of equilibrium, which is formally stated below.

Definition 2. A noisy rational expectations equilibrium is characterized by a profile of shop-

pers’ expectations {E[µi|pi]}1i=0 such that E[µi|pi] = âpi with ai (â) = â, for each i ∈ (0, 1).

Our game-theoretic interpretation of the optimal coefficient makes clear the equivalence

between a rational expectations equilibrium and a Nash equilibrium: No one has any indi-

vidual incentive to deviate when everybody else conforms to the equilibrium prescriptions.

An equilibrium of the model is a fixed point of the individual best-weight mapping given

by equation (25). In practice, there are as many equilibria as intersections between ai(a) and

the bisector. The fixed-point relation delivers a cubic equation, which may have one or three

real roots. The following proposition characterizes these equilibrium points.

Proposition 1. For γ ≥ 1/2, there always exists a unique REE equilibrium for â = au ∈
(0, γ−1).

For γ < 1/2, there always exists a low REE equilibrium for â = a− ∈ (0, (1− γ)−1). In

addition, there exists a threshold σ̄2 such that, for any σ2 ∈ (0, σ̄2), a middle and a high

REE equilibrium also exist for â = a◦ and â = a+, respectively, both lying in the range

((1− γ)−1 , γ−1).

Proof. Given in Appendix A.1.

Proposition 1 states that when the aggregate component receives relatively high weight

in the signal, the model may exhibit multiplicity. In particular, there are three equilibria

whenever γ < 1/2 and the variance of the productivity shock is small enough; otherwise, a

unique equilibrium exists. While an analytical characterization of these equilibria is possible,
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(a) γ = 0.75

0

a

0

a
i

a i
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γ
−1

(1− γ)−1

Large σ
Medium σ
Small σ

(b) γ = 0.25

Figure 1: The figure illustrates four properties of ai(a) for given γ and σ: (i) ai(0) > 0; (ii)
a′i(a) < 0 for a ∈ (0, (1−γ)−1), and ai((1−γ)−1) = 0; (iii) a′i(a) > 0 for for a ∈ ((1−γ)−1, γ−1)
and lima→∞ = γ−1; (iv) ∂ai(a)/∂σ ≥ 0.

the expressions are rather complicated. Nevertheless, the relevant properties can be grasped

from the reaction functions plotted in Figure 1 (see figure caption).

The slope of the ai(a) curve at the intersection with the bisector determines the nature

of the strategic incentives underlying each equilibrium. Equilibria au and a− are character-

ized by substitutability in information, as the optimal individual weight is decreasing in the

average weight, i.e., a′i(â) < 0.8 In contrast, the equilibria a◦ and a+ are characterized by

complementarity in information since a′i(â) > 0. In fact, as soon as a > (1− γ)−1, the higher

the a the higher the precision of the signal, which further pushes up the optimal weight. The

emergence of complementarity explains the upward-sloping part of the best-weight function

and is key for the existence of multiple equilibria.

While complementarity is essential for generating multiple equilibria, it is neither neces-

sary nor sufficient to imply a strong informational multiplier. To see this, define the multi-

plier, Γ(â) ≡ σ2
q(â)/σ2, as the volatility of beliefs relative to the volatility of the shock ζ for

some equilibrium point â. We will say that the economy exhibits amplifying informational

feedback whenever a fall in the volatility of the exogenous shock leads to an increase in Γ(â),

i.e., ∂Γ(â)/∂σ < 0, and dampening feedback otherwise. The following proposition classifies

the equilibria in Proposition 1 according to the type of feedback they generate.

8See equation (65) in appendix A.1.
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Proposition 2. The equilibria au, a−, and a◦ all exhibit amplifying feedback, while the equi-

librium a+ exhibits dampening feedback.

Proof. Given in Appendix A.1.

The characterization of informational feedbacks as either amplifying or dampening de-

pends on whether the equilibrium value of a gets closer to (1−γ)−1 as σ shrinks. From Figure

1, it is clear that au, a◦, and a− feature amplifying feedback, whereas a+ features dampening

feedback. Nevertheless, the feedback effects in a◦ and a− are distinct from that in au for

reasons we discuss in the following section.

2.3 Low variance in productivity shocks

In this section we analyze the properties of equilibrium when the variance of the productivity

shock becomes small. This case is particularly interesting because, as σ2 decreases, the

volatility of the consumption price decreases, leading its informational content about local

conditions to rise. Hence, as aggregate volatility shrinks, the informational role of prices

dominates their allocative role and agents react to prices more for their informational content

than for the costs they impose. This mechanism provides the key insight for understanding

the strong amplification we document in this section.

Sentiment equilibria as limit case of strong amplification

Here we show that learning from prices can generate such high amplification of fundamental

shocks that the economy can sustain sizable aggregate fluctuations, even in the limit σ2 → 0.

We see this as a new characterization of sentiments-driven fluctuations, which have recently

received growing attention in the literature. The intuition for this result is captured by

Figures 2 and 3, which plot, for each equilibrium, the evolution of signal precision and the

variance of the average expectation as a function of the volatility of productivity shocks. As

σ shrinks, the unique and the high equilibria, namely au and a+, approach infinite precision

and no aggregate volatility. In contrast, the middle and the low equilibria a◦ and a− converge

to finite precision and sizable aggregate volatility.

The plots numerically demonstrate that, as σ goes to zero, the informational feedbacks

in the middle and low equilibria grow at a speed that makes the product of the two achieve
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Figure 2: (Inverse) signal precision as a function of exogenous shock volatility.

a finite limit. The following proposition establishes the result formally.

Proposition 3. In the limit σ2 → 0,

i. the unique equilibrium (for γ ≥ 1/2) and the high equilibrium (for γ < 1/2) converge to

a point with no aggregate volatility:

lim
σ2→0

au,+ = max

(
1

γ
,

1

1− γ

)
lim
σ2→0

σ2
q(au,+) = 0. (26)

ii. the low and middle equilibria (for γ < 1/2) converge to the same point and exhibit

non-trivial aggregate volatility:

lim
σ2→0

a−,◦ = (1− γ)−1 lim
σ2→0

σ2
q(a◦,−) =

γ(1− 2γ)

(1− γ)2
. (27)

Proof. Given in Appendix A.1.

In the limit of σ → 0, the middle and low equilibria have the same stochastic properties

as the sentiment equilibria described by Benhabib et al. (2015). This means that, despite

the infinitesimal size of the fundamental shock, its realization is able to coordinate sizable

fluctuations in agents’ expectations.

The limiting result suggests that a strict dichotomy between fundamental and non-

fundamental fluctuations is misleading. Since endogenous signal structures can generate

strong multiplier effects on small shocks, they can deliver fluctuations that effectively span
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Figure 3: Belief volatility approaching the limit.

a continuum from purely fundamental-driven to purely sentiment-driven. Of course, this

possibility does not preclude the existence of fluctuations that originate from truly payoff-

irrelevant shocks, but the possibility of fundamental-based sentiments may appeal to those

who find such fluctuations implausible.

Moreover, in our economy, agents’ coordination on small fundamental shocks as the drivers

of beliefs arises endogenously through the competitive price system, rather than being as-

sumed from the outset. The analysis of Benhabib et al. (2015) occurs at the limit point

rather than approaching it, so it cannot explain the origins of coordination on a particular

sentiment shock.

A special feature of our account of sentiments is that, as the economy approaches the

limit, expectations and aggregate outcomes are perfectly correlated with fundamentals, al-

though the fluctuations in fundamentals themselves become progressively more difficult for

the econometrician to measure. In Section 3, we show how the addition of a noisy pub-

lic signal to the economy can generate expectations-driven fluctuations that are imperfectly

correlated with economic fundamentals.

A final implication of our basic analysis here is that the addition of a small amount of

aggregate noise in the signal—in this case, captured by the effect of productivity on the price

signal—can sustain additional equilibria that do not arise under full information. A previous

literature has demonstrated cases in which adding idiosyncratic noise to signals can either
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eliminate (Morris and Shin, 1998) or generate (Gaballo, 2015) additional equilibria. But this

is the first time it has been observed, to our knowledge, that adding aggregate noise can

cause equilibria to proliferate.

Supply shocks generate demand-driven fluctuations

In this section, we show that limiting sentiment-like equilibria share an important feature with

all the equilibria of our economy: When aggregate shocks are not too large, final good prices,

total output, the price of the endowment, and total employment positively comove. This

happens in all equilibria because, as aggregate volatility falls, the informational value of the

price signal rises, leading agents’ beliefs about their local conditions to respond more strongly

to it. Stronger aggregate effects on beliefs eventually lead the informational channel of prices

to dominate, so that consumption increases in response to higher prices. Learning from

prices thus provides a new mechanism for generating expectations-driven demand shocks in

an economy hit only by fundamental shocks to productivity. In this respect, the fluctuations

in our economy are similar to those studied by Lorenzoni (2009), although our mechanism is

static and does not require the presence of exogenous shocks to information.

The consequences of endogenous information for business cycle comovements are most

intuitively seen by analyzing the aggregate demand and aggregate supply schedules in our

economy. Given (3), (7), and (17), we can express aggregate demand and supply as

AD : c = q − p, (28)

AS : c = γq − (1− γ)ζ. (29)

When the endowment price q has no effect on shoppers’ beliefs, this relationship implies

a standard downward-sloping aggregate demand relation. However, once we account for

the equilibrium feedback of prices into shoppers’ inference, the aggregate demand and the

aggregate supply relations become

AD : p =
1

a− 1
c (30)

AS : p =
1

γa
c+

1− γ
γa

ζ (31)
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where a denotes the average weight put on the price by shoppers who form their expectations

according to E[µi|pi] = api, so that q =
∫
E[µi|pi]di = ap.

Crucially, the relation in (30) implies that aggregate demand is upward sloping for any

a larger than unity. That is, price and quantity will move together, despite the nature of

the shock hitting the economy! As the relative variance σ decreases, this will be true for

all equilibria in the economy. Even the equilibrium ah, which displays no fluctuations in

the limit σ → 0, exhibits comovements in prices and quantities away from that limit, as if

the economy is hit by a common preference shock. In fact, the equilibrium condition a > 1

always entails a situation in which the informational content of prices is more important than

their allocative effect, that is, movements in expected marginal utility of a good more than

compensate for a change in its price. In the model driven by aggregate productivity shocks,

the consequences for aggregate demand have immediate implications for the comovement of

prices and quantities in the economy.

Proposition 4. For σ2 sufficiently small, all equilibria exhibit comovement of aggregate

output, employment, the price level, and the price of the endowment.

Proof. The results follows from continuity of the best-response function, and the observation

that all limit equilibria entail â > 1.

As the proposition shows, with sufficiently informative prices, the economy will always

demonstrate positive comovement between prices and quantities, even though the correspond-

ing full-information equilibrium will exhibit covariance of the opposite sign. The learning-

through-prices mechanism can thus easily reverse the typical assumptions made regarding

the identification of demand and supply shocks, and it does not require being at the limit or

a particular equilibrium selection to do so.

Figure 4 plots aggregate supply and demand relations for different values of the relative

volatility σ, for a case in which a multiplicity is possible (γ = 0.25). As σ shrinks, the slope

of aggregate demand in the low equilibrium first switches signs and then, as σ approaches

the limit, it becomes nearly parallel with the aggregate supply curve of the economy. In
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Figure 4: Aggregate supply and demand in the microfounded model.
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particular, the limit situation corresponds to

AD : p =
γ

1− γ
c (32)

AS : p = c+
1− γ
ζ

(33)

when considering au and a+, for which limσ→0 ai(au,+) = γ−1, and

AD : p =
1− γ
γ

c (34)

AS : p =
1− γ
γ

c+
(1− γ)2

γ
ζ (35)

when considering a◦ and a− for which limσ→0 ai(a◦,−) = (1− γ)−1.

The figure provides an easy intuition for the extremely large informational multiplier

implied by our sentiment-like equilibria, as even small shifts in aggregate supply imply large

changes in the equilibrium quantity of consumption. Moreover, because all equilibria with

sufficiently small σ demonstrate upward-sloping aggregate demand, the same information

mechanism that delivers sentiments as a special case more generally offers the potential to

be an important amplification mechanism for nontrivial aggregate shocks, which then show

up as expectations-driven fluctuations.

3 Noisy Public Information

Given that agents generally observe some indicators of aggregate conditions, a natural ques-

tion is whether the results above generalize to a situation in which agents observe some signal

regarding the fundamental shock. In this section, we therefore consider expanding agents’

information to include a second signal of the form

g = ζ + ϑ,

where ϑ ∼ N(0, σ2
ϑ) is a common aggregate noise term. In this case, agents form expectations

with weights on both the price signal and the public signal. In particular, the public signal is

useful for refining the information of the price signal, allowing agents to partial out a portion

of the aggregate productivity shock, which blurs the inference of shoppers.
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Signal extraction with public information

Let us consider the following linear forecasting rule:

E[µi|pi, g] = aipi − biai(1− γ)g, (36)

where ai is the same as before and bi represents the weight that shopper i puts on the

public signal, which we re-scale for convenience by ai and (1− γ). Therefore, we can rewrite

shoppers’ expectation as

E[µi|p̃i] = aip̃i, (37)

where

p̃i ≡ γµi + (1− γ)

(∫
E[µi|p̃i]di+ ζ − big

)
, (38)

represents a new signal embodying the information available to the individual shopper.9 In

particular, the highest precision of the new signal p̃i is obtained when bi is set to minimize

the variance of the correlated component, which depends on ζ and ϑ, taking the average

weight b as fixed. To recover the best weight function bi(b), we again use the conjectured

strategies of other agents to substitute out the average expectation in (38) to arrive at

p̃i = γµi + (1− γ)

(
a(1− γ)

1− a(1− γ)
(ζ − bg) + ζ − big

)
, (39)

where a =
∫
aidi and b =

∫
bidi. Therefore bi(b) is the value that minimizes the variance of

the term multiplied by (1− γ) in (39). It is easy to observe that

b̂ =
σ−2ϑ

σ−2ζ + σ−2ϑ
(40)

minimizes E[(ζ − b̂g)2|g] and we can conclude that bi(b̂) = b̂ holds in any equilibrium.

Proposition 5. Suppose that agents’ information consists of {pi, g}. Then, the equilibrium

of the economy is characterized by E[µi|pi, g] = aip̃i, where

p̃i = γµi + (1− γ)(q + ζ̃) (41)

9By the Frisch-Waugh theorem, the projection of µi on {pi, g} is equivalent to the projection of µi on
p̃i ≡ pi − E[pi|g], where E[pi|g] = bi(1− γ)g.
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and ζ̃ is given by

ζ̃ ≡ (1− b̂)ζ − b̂ϑ. (42)

The equilibrium values {au, a−, a◦, a+} and the conditions for their existence are isomorphic

to the ones in the baseline economy once σ̃2
ζ takes the place of σ2

ζ.

Proof. Given in appendix A.1.

Equation (42) has several important implications. First, the one- and two-signal models

coincide as σ2
ϑ → 0, and the aggregate public signal become uninformative. Moreover, to

the extent that the aggregate signal is informative, its effect corresponds to a decrease in

the volatility of the shock, ζ̃, thereby pushing the economy toward a situation of multiple

equilibria. For the low equilibrium, this implies an increase in the variance of the average

expectation of shoppers.

This result makes clear that the addition of the aggregate signal does not prevent agents’

endogenous price signals from coordinating errors in their inference. To the contrary, when-

ever the economy without the public signal exhibits reinforcing informational feedback, in-

creasing the precision of the public signal strengthens the feedback generated by agents’

endogenous signals. When γ < 1/2, this pushes the economy closer to the limit point in

which there are multiple equilibria, including one that exhibits large aggregate fluctuations

driven by beliefs.

Economic implications

While the signal extraction problem of the model with an aggregate signal is isomorphic to

the baseline economy, several important differences emerge with respect to the qualitative

business cycle implications for consumption and prices. To see these, notice that in equi-

librium the average endowment price q is now a function of both the average price in the

economy and the public signal,

q = a(p− (1− γ)bg).
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Substituting into the aggregate demand and aggregate supply expressions in equations (28)

and (29) yields

AD : c = (a− 1)p− a(1− γ)bg (43)

AS : c = γ (ap− a(1− γ)bg)− (1− γ)ζ. (44)

Notice that both aggregate demand and aggregate supply are implicitly shifted by the pro-

ductivity shock ζ and by the noise in the aggregate signal ϑ, via its appearance in the public

signal g. Moreover, since the coefficients on these two shocks are different, they will have

potentially different implications for aggregate supply and demand.

Solving for the full equilibrium of the economy yields the following expressions for price

and consumption,

p = (1− γ)

(
1− â(1− γ)b̂

1− â(1− γ)
ζ − â(1− γ)b̂

1− â(1− γ)
ϑ

)
(45)

c = −(1− γ)

(
1− â+ âγb̂

1− â(1− γ)
ζ +

âγb̂

1− â(1− γ)
ϑ

)
. (46)

Comparing (45) and (46), it is clear that the coefficients on the fundamental ζ will take

opposite signs whenever b̂ is sufficiently close to one. That is, productivity shocks can induce

negative comovements when the public signal is sufficiently precise. This result contrasts

with the case in the previous section without a public signal, when the same productivity

shock induced perfect positive comovement. On the other hand, it is immediate to see that

noise shocks in the public signal will always induce positive comovement in the economy,

regardless of the precision of the information. Unconditional comovement in the economy

will therefore depend on the contribution of each shock to overall correlations and, in general,

will fall somewhere strictly between zero and one.

In Figure 5, we document how the correlation between the average consumption price

and total output may be affected by the variance of the noise in the public signal, with the

case of γ = 0.75 in the left panel and the case of γ = 0.25 in the right panel. In particular,

we fix a value of σ for which multiple equilibria exist when γ = 0.25. When the noise in

the signal is large, the price-quantity correlation approaches either 1 or −1. Perfect negative
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Figure 5: Correlation between average price and quantity as a function of the variance of
noise in the public signal.

correlation arises only for the low equilibrium when σ is sufficiently large; for smaller values

of σ, all equilibria exhibit positive price-quantity correlation following the analysis of the

previous section.

The different equilibria respond in distinct ways as the variance of the noise in the public

signal shrinks. In the unique and high equilibrium, supply-driven fluctuations crowd-out

demand-driven ones, leading to growing negative correlations. This occurs because the high

and unique equilibrium converge to points with no fluctuations in expectations, leaving be-

hind only the supply-side effects of productivity shocks. In contrast, in the low equilibrium,

higher precision of the public signal crowds-in expectations-driven demand shocks and drives

price-quantity correlation up. The low equilibrium converges to a limit in which expecta-

tions are maximally volatile, but price-quantity correlation remains less than unity due to

the presence of still-sizable productivity shocks. Finally, the middle equilibrium achieves the

same correlation value as the low equilibrium since both equilibria converge to the same limit

outcome.

This analysis show that the addition of a public signal—and therefore of an alternative

source of aggregate noise—is one possible approach to breaking the perfect correlation, either

positive or negative, between p and c that is implied by the baseline model. Instead, as

the aggregate signal becomes sufficiently precise, the economy behaves as if it is hit by
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Figure 6: Variance decomposition when γ = 0.75: aggregate noise vs. fundamentals.

both supply- and demand-side disturbances, leading to imperfect but potentially positive

correlation between price and quantity.

Figures 6 and 7 provide a variance decomposition for consumption and the price level,

for the same cases illustrated above. Indeed, increasing the precision of the public signal

generally increases the role of common noise in the low and middle equilibria, although some

non-monotonicity does arise. On the other hand, the figures for the high and the unique

equilibria are striking. It turns out that almost all of the variance in these equilibria is

driven by productivity shocks when the variance of aggregate noise is either sufficiently small

or sufficiently high. Nevertheless, in the unique equilibrium case, there exists an intermediate

value of σϑ for which consumption is driven entirely by common noise and prices nearly

entirely by productivity shocks. A similar result holds for the high equilibrium when γ = 0.25

illustrated in panel (b) of Figure 7. Here, there exists an intermediate value of σϑ for which

consumption is driven entirely by productivity shocks, and prices almost entirely by common

noise.

In particular, looking at (45) we can easily see that prices do not depend on fundamental

shocks when a = ((1 − γ)b)−1, where recall that b < 1. Such a value can only be achieved

by a◦ and a+ for a single (different) value of σ, provided b > γ/(1 − γ), which ensures that

(1−γ)b ∈ ((1−γ)−1, γ−1). On the other hand, consumption does not depend on fundamental

shocks when a = 1/(1− γb). Such a value can only be achieved by au for a single value of σ,
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Figure 7: Variance decomposition when γ = 0.25: aggregate noise vs. fundamentals.

provided b > (1− γ)/γ, which can only be for γ > 1/2 given that b < 1.

Summing up, the introduction of public information opens the way for aggregate beliefs

to become disconnected from aggregate productivity shocks and allows for the simultaneous

existence of “supply” and “demand” fluctuations in the economy, despite the presence of only

a single aggregate fundamental shock. In the limit of arbitrarily small noise in the public

signal, the model delivers fluctuations in aggregate beliefs that—although coordinated by

noise in the public signal—could not be so-attributed by the econometrician who observes

only imperceptibly small eventual revisions to the public data. Finally, we have shown that,

even far from any limit, equilibria exist in which fluctuations in prices and quantities can be

explained by different exogenous processes.

4 Extensions and Discussion

This section presents several extensions to the basic setup, showing that the insights of the

main mechanism are robust to various modeling details. In the first, we show that convexity

in the disutility of labor (i) expands the range of γ for which strong informational multipliers

and equilibrium multiplicity may arise, and (ii) induces wages to comove positively along

with prices and quantities for sufficiently small values of σ. We then show that allowing for

correlation in the good-specific taste shocks µi does not materially affect the conclusions of

the baseline model with productivity shocks. Finally, we allow for the disaggregation of goods
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at the island level to demonstrate that the existence of upward-sloping aggregate demand in

our model does not require the existence of Giffen-type goods at the micro level.

4.1 Convexity in labor disutility

Here, we show how our framework easily extends to the case of convex disutility in labor.

Let the household utility function be

∫
eµi
(
logCi − φN1+α

i

)
di (47)

where α > 0 denotes the inverse of the Frisch elasticity of labor supply. In this case the

local wage will not be a direct measure of the island-specific preference shock, but rather

will depend on this shock and the aggregate quantity of labor supplied to the market. In

Appendix A.2 we report the detailed derivation. Below we describe how this change affects

the characterization of the equilibrium.

Characterization of the equilibrium, extended case. An equilibrium is charac-

terized by a profile of shoppers’ expectation {E[µi|pi]}1i=0 so that, given (12), in each island

i ∈ (0, 1) we have

pi =
γ

1 + α
µi +

αγ

1 + α
E[µi|pi] + (1− γ)(q + ζ), (48)

ci =
1 + α(1− γ)

1 + α
E[µi|pi]−

γ

1 + α
µi − (1− γ)(q + ζ), (49)

wi = µi + αni (50)

ni =
1

1 + α
E[µi|pi]− µi, (51)

z(i) = E[µi|pi]− q. (52)

A rational expectations equilibrium is one for which shoppers’ expectations, E[µi|pi], are

rational.

Proof. Derivations are provided in Appendix A.2.

In this extension, the local price is affected by the individual expectation of the repre-

sentative local shopper, as the equilibrium quantities of labor depend on shoppers’ demand.

One can easily show that our analysis of the baseline economy also applies also in this case,
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once the price signal is conveniently transformed. To arrive at a signal structure that is iso-

morphic to the baseline economy, subtract the individual expectation from (48) and rescale

to obtain

p̂i =
1 + α

1 + α(1− γ)

(
pi −

αγ

1 + α
E[µi|pi]

)
= γ̂µi + (1− γ̂)(q + ζ),

where γ̂ = γ/(1+α(1−γ)). The analysis of section 2.2 follows after substituting the original

price signal pi with the equivalent one p̂i.

The extension delivers two important additional insights. First, multiple equilibria exist

whenever γ̂ < 1/2 which could well obtain even with γ > 1/2 for a sufficiently high α. This

is desirable since typical estimate of the labor share pin γ > 1/2, and might have otherwise

precluded the strongest informational multipliers from appearing in a realistic calibration of

the model. Second, it follows from equation (50) that demand-driven fluctuations now also

feature positive comovement of wages with the average consumption price, the price of the

endowment, total output, and total employment. The economy thus generates a robust and

realistic pattern of comovement across many variables.

4.2 Correlation in island-specific shocks

We now consider a version of the model in which preference shocks are correlated—that is µi =

µ + εi where µ ∼ N
(
0, σ2

µ

)
—and there are no productivity shocks. Notice that previously,

productivity shocks acted as noise in the signal, since shoppers were only interested in the

forecast of µi. Now, the aggregate term µ represents a common objective in the signal

extraction problem of shoppers.

Following the derivation of (13), the price signal is expressed as

pi = γ(µ+ εi) + (1− γ)

∫
E[µ+ εi|pi]di, (53)

which no longer embeds a productivity shock. Nonetheless, correlated fundamentals generate

confusion between the idiosyncratic and common components of the signal. As before, the

individual expectation of a shopper of type i is formed according to the linear rule E[µ +

εi|pi] = aipi. Hence, the signal embeds the average expectation, which again causes the

precision of the signal to depend on the average weight a. Following the analysis of the
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earlier section, the realization of the price signal can be rewritten as

pi = γεi +
γ

1− a(1− γ)
µ, (54)

where a represents the average weight placed on the signal by other shoppers. The variance

of the average expectation is given by

σ2
q(a) =

(
γa

1− a(1− γ)

)2

σ2, (55)

which is slightly different from (22). The shopper’s best response function is now given by

ai(a) =
1

γ

(
(1− a(1− γ))2 + (1− a(1− γ))σ2

(1− a(1− γ))2 + σ2

)
. (56)

While the best-response function in equation (56) is slightly different than that of equation

(25) for the case with productivity shocks, we can prove that the characterization of the limit

equilibria is identical.

Proposition 6. In the limit σ2
µ → 0, the equilibria of the economy converge to the same

points as the baseline economy:

lim
σ2
µ→0

aµe = lim
σ2→0

ae lim
σ2
µ→0

σ2(aµe ) = lim
σ2→0

σ2(ae) for e ∈ {u,−, ◦,+} (57)

Proof. Given in Appendix A.1.

More generally, it is possible to show that propositions 1 through 3 follow identically, and

their proofs proceed in parallel with only the obvious algebraic substitutions.

4.3 A theory of Giffen goods?

One possible objection to the realism of our mechanism is the implication that the consump-

tion of island-specific good Ci is rising in its price, i.e., that local consumption goods appear

to be Giffen goods. Such behavior at the good level is not an essential aspect of our story.

The most natural way to avoid this complication is to presume that, within islands, quantity-

choosing firms produce a continuum of goods indexed by (i, j), which are then aggregated

at the island-level good by a standard Dixit-Stiglitz aggregator, Ci =
(∫

C
1− 1

θ
i,j

) 1

1− 1
θ dj with

θ > 1.
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Suppose now that each (i, j) producer is hit with an idiosyncratic, mean-zero productivity

shock, υi,j. In this case, the price of good ci,j in logs turns out to be

pi,j = υi,j + γµi + (1− γ)(q + ζ).

Demand for good ci,j is governed by the standard formula

ci,j = −θ(pi,j − pi) + ci,

which reflects a substitution effect governed by the standard elasticity parameter at the good

level: An econometrician studying good-level prices would find no evidence that the typical

good is Giffen. Nevertheless, the total price level on island i,

pi =

∫
pi,jdj = γµi + (1− γ)(q + ζ),

is both (i) identical to its value in the baseline economy, and (ii) reflects the optimal (even)

weighting of the signals pi,j that shoppers use in equilibrium to infer their local demand

shock: subsequent analysis of the island-level and aggregate economy is not affected.

5 Equilibria Selection

This section exploits the characterization of the individual best-response function in the game

implied by dispersed information to examine the stability of equilibria under two popular

out-of-equilibrium beliefs dynamics: rationalizability and adaptive learning. We show that

equilibria with reinforcing feedback may be stable, although sentiment-like equilibria are

generally excluded by these tests.

5.1 Higher-order belief dynamics

In our economy, a “rational” expectation is characterized by a mapping ai(a) : < → < which

associates an individual best weight ai(a) with any value of the average weight a. A rational

expectations equilibrium is an equilibrium weight â such that ai(â) = â for each i ∈ (0, 1),

and â reflects the precision of the endogenous signal at equilibrium. But how can people gain

common knowledge that others will conform to the equilibrium prescription?
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This is an old question on the epistemic foundations of Nash equilibrium with an impor-

tant tradition in decision theory. A widely accepted concept is that of the rationalizable set

(Bernheim, 1984; Pearce, 1984), defined as the strategy profile set that survives the iterated

deletion of never-best replies. This criterion exploits implications from common knowledge

of rationality in the model.

Guesnerie (1992) introduces the rationalizability argument to macroeconomics in the

context of complete-information competitive economies. Here we adapt Guesnerie’s origi-

nal setup in a dispersed information model and focus on the best-expectation coordination

game entailed by the maps {ai(a)}i∈(0,1). In contrast to the original Guesnerie setting, here

agents agree on the unconditional expectation of their idiosyncratic fundamental, which is

exogenous to the average behavior, but are uncertain about the precision of the information

they are looking at. Nothing in the model guarantees that agents will use the same condi-

tional distribution to forecast their idiosyncratic fundamental. Below, we check whether the

assumption of common knowledge of rationality is sufficient to restrict the agents’ strategic

space to the rational expectations equilibrium prescriptions.

Initially, we take a local point of view. Suppose it is common knowledge that the indi-

vidual weights on the signal lie in a neighborhood z (â) of â. Is this a sufficient condition

for convergence in higher-order beliefs to â? The process of iterated deletion of never-best

replies works as follows. Let τ index the iterative round of deletion. If ai,0 ∈ z (â) for each

i, then a0 ∈ z (â). Nevertheless, the latter implies that second-order beliefs are justified in

which ai,1 = ai (a0) for each i, so that ai,1 ∈ ai (z (â)). As a consequence, a1 ∈ ai (z (â)).

One can iterate the argument showing that ai,τ ∈ aτi (z (â)). Hence, we have the following.

Definition 3. A rational expectations equilibrium â is a locally unique rationalizable outcome

if and only if there exists a neighborhood z (â) of â such that limτ→∞ a
τ
i (z (â)) = â.

When a rational expectations equilibrium is a locally unique rationalizable outcome, we

can conclude that the equilibrium is stable to a sufficiently small higher-order-beliefs pertur-

bation (or is eductively stable, in Guesnerie’s language). In other words, the equilibrium is

robust to beliefs that others could locally deviate from it, as agents conclude that no rational

conjecture can sustain such a deviation.

Higher-order beliefs may also be globally stable if the best response function entails a
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contraction for each point of the domain of a, that is, when limτ→∞ a
τ
i (<) = â. When an

equilibrium is the globally unique rationalizable outcome, then it represents the only profile

of strategies that rational agents will play. In this sense, the theory provides a complete

account of how out-of-equilibrium beliefs converge to the unique equilibrium.

Belief convergence requires that ai(a) is a contraction mapping. For a locally rational-

izable rational expectations equilibrium, a necessary and sufficient condition is |a′i (â)| < 1.

Proposition 7 states the result.

Proposition 7. The low and unique equilibrium are locally unique rationalizable equilibrium

provided σ is large enough. Whenever the middle and the high equilibria exist, the latter is

always a locally unique rationalizable equilibrium, whereas the former is never. In the limit of

σ → 0, the middle and the low equilibria are never stable under higher-order beliefs dynamics,

whereas the unique equilibrium is.

Proof. Given in Appendix A.1

One can easily show that a◦ is never a locally unique rationalizable outcome from the

qualitative properties associated with the equilibria. First, ai(1 − γ)−1 = 0 lies below the

45-degree line. Second, for a > (1 − γ)−1, the best-weight function is always monotonically

increasing. These two observations taken together require that a′i(a◦) > 1, thus proving that

whenever the middle equilibrium a◦ exists, it is not locally unique rationalizable.

A second result is that whenever a+ exists and is distinct from a◦, it is always a locally

unique rationalizable outcome, since the first derivative at this equilibrium has to be bounded

below one to meet the 45-degree line. In the knife-edge case in which a◦ = a+, the fixed-

point mapping is tangent to the bisector, meaning that a′i (a+) = 1, which does not satisfy

the condition for rationalizability.

To establish the convergence properties of a−, one needs to check that there is a threshold

σ such that for any σ ∈ (0, σ), this equilibrium is not locally rationalizable; otherwise it is.

To give an intuition, notice that in the case of the two limit equilibrium outcomes we have

limσ→0 a− = limσ→0 a◦ = (1− γ)−1, for which the derivative of the best-response function is

limσ→0 a
′
i = ±∞. On the other hand, a′i (a−) increases in σ with 0 as an upper bound so

that there exists a σ such that for any σ > σ, the low a− is always rationalizable. Therefore

there could be a multiplicity (two) of rationalizable rational expectations equilibrium for
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Figure 8: Volatilities and equilibrium stability approaching the limit.

intermediate values of σ ∈ (σ, σ̄). To examine when this is the case, we perform the following

numerical analysis.

The first panel of Figure 8 illustrates the size of expectations volatility generated by the

unique-equilibrium economy as a function of the inverse of σ, and shows that equilibrium is

always rationalizable. The second panel plots beliefs volatility and stability properties for

the three equilibria (whenever they exist) of the model with γ = 0.25. For high enough σ,

only the low equilibrium exists. The volatility generated at that equilibrium is monotonically

decreasing in σ. The low equilibrium is a locally unique rationalizable outcome, provided

σ is sufficiently large. With sufficiently low σ, the middle and high equilibria exist as well.

The latter is always a locally unique rationalizable outcome, whereas the former never is.

The same picture shows that the unique equilibrium is always a unique locally rationalizable

outcome.

Notice that in the example illustrated in Figure 8, there is no region in which multiple

locally unique rationalizable outcomes exist. Moreover, there exists a region in which the

low equilibrium is the only equilibrium, but it is not a locally unique rationalizable out-

come. Finally, only for sufficiently small σ can a globally unique rationalizable outcome

arise, originating in the low equilibrium.

In Figure 9, we show through numerical investigation that for sufficiently low values of

γ, there is a region in which two equilibria, the high and the low, emerge as locally unique
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rationalizable outcomes. Nevertheless, this would not arise in the limit of infinite precision,

in which case only the high equilibrium remains a locally unique rationalizable equilibrium.

5.2 Adaptive learning

We now suppose that agents behave like econometricians rather than game theorists. That

is, agents individually set their weights to be consistent with data generated by possibly out-

of-equilibrium replications of the signal extraction problem, without internalizing the effect

of the ongoing process of learning in the economy. At time t they set a weight ai,t, which is

estimated from the sample distribution of signals collected from past repetition of the signal

extraction problem.

The asymptotic behavior of statistical learning algorithms can be analyzed by stochastic

approximation techniques (for details, refer to Marcet and Sargent, 1989a,b and Evans and

Honkapohja, 2001). To see how this works in our context, consider the case in which agents

learn about the optimal weight according to an optimal adaptive learning scheme:

ai,t = ai,t−1 + γt S
−1
i,t−1 pi,t

(
µi,t − ai,t−1pi,t

)
(58)

Si,t = Si,t−1 + γt+1

(
p2i,t − Si,t−1

)
, (59)
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where γt is a decreasing gain with
∑
γt =∞ and

∑
γ2t = 0, and matrix Si,t is the estimated

variance of the signal rewritten with a convenient time index. The following formally defines

adaptive stability.

Definition 4. A rational expectations equilibrium â is a locally learnable equilibrium if and

only if there exists a neighborhood z (â) of â such that, given an initial estimate ai,0 ∈ z (â),

it is limt→∞ ai,t
a.s
= â.

Adaptive learning therefore represents an alternative description of out-of-equilibrium

dynamics, which can explain how agents can converge (or fail to converge) to a rational

expectations equilibrium.

An equilibrium is globally learnable whenever almost-sure convergence obtains irrespec-

tive of the initial condition—that is, when limt→∞ ai,t
a.s
= â for any ai,0 ∈ <. Notice that,

in contrast to the rationalizability criterion, there could exist a unique globally learnable

equilibrium despite the existence of multiple rational expectations equilibria. This is because

the stochasticity of the learning process will always displace estimates temporarily away from

equilibrium values. Nevertheless, if there exists only one rational expectations equilibrium,

then if it is learnable it must be globally learnable.

To check local learnability of the rational expectations equilibrium, suppose we are already

close to the resting point of the system. That is, consider the case
∫

limt→∞ ai,t di = â, where

â is one of the equilibrium points {a−, a◦, a+}, and so

lim
t→∞

Si,t = σ2
s (â) = γ2σ2

µ +
(1− γ)2

(1− â (1− γ))2
σ2
ζ . (60)

According to stochastic approximation theory, we can write the associated ODE governing

the stability around the equilibria as

da

dt
=

∫
lim
t→∞

E
[
S−1i,t−1pi,t

(
µi,t − ai,t−1pi,t

)]
di

= σ2
s (â)−1

∫
E
[
pi,t
(
µi,t − ai,t−1pi,t

)]
di

= σ2
s (â)−1

(
γσ2

µ − ai,t−1

(
γ2σ2

µ +
(1− γ)2

(1− at−1 (1− γ))2
σ2
ζ

))
= ai (a)− a. (61)

35



For asymptotic local stability to hold, the Jacobian of the differential equation in (61) must be

less than zero at the conjectured equilibrium. The relevant condition for stability is therefore

a′i (a) < 1. The result is stated by the following proposition.

Proposition 8. The unique equilibrium is always learnable. Whenever they exist, the high

equilibrium is locally learnable, whereas the middle equilibrium is not. The low equilibrium is

always locally learnable, except at the limit σ → 0, and it is globally learnable provided σ is

large enough.

Proof. Given in Appendix A.1

Referring to Figure 2, the slopes of the curves at the intersection of the bisector reflect the

stable or unstable nature of the equilibrium. In particular, notice that the middle equilibrium

defines two distinct basins of attraction for the learnable equilibria. As σ decreases, the basin

of attraction of the high equilibrium grows from below. This means that estimates are more

and more likely to converge to the high equilibrium—the equilibrium without sentiments—as

σ gets smaller. At the limit σ → 0, the low equilibrium is no longer learnable from above,

meaning that any initial estimate a larger than a−, no matter how close it is to a−, is fated

to trigger convergence to the high equilibrium. This would suggest that although sufficiently

negative shocks to the estimates can lead to a persistent deviation in the lower basin of

attraction of the low sentiment equilibrium, long run-convergence can only obtain at the

high sentiment-free equilibrium.

Our learnability results contrast with the original stability analysis of Benhabib et al.

(2015). In their approach, agents treat the signal as exogenous, conjecturing a common

precision and then updating dynamically. In our characterization, however, agents’ learning

incorporates the endogenous relationship between signal precision and the average action, and

this endogeneity generates a coordination issue not contemplated by Benhabib et al. (2015).

The contrast between our results suggests that small differences in the microfoundations

underpinning sentiment fluctuations can lead to opposing conclusions about their stability,

and thus deserve additional attention in this literature.
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6 Conclusion

Endogenous structures of asymmetric information can deliver strong multipliers on common

disturbances, and thus offer a potential foundation for expectations-driven economic fluc-

tuations. Here we have demonstrated that a single analysis can address such fluctuations,

whether they originate in common fundamentals or a mixture of fundamentals and com-

mon noise. Because of the amplification power of this mechanism, sentiment equilibria may,

paradoxically, originate from economic fundamentals themselves and need not originate with

shocks disconnected from the physical environment. Instead, expectations-driven fluctua-

tions can be initiated by small changes in fundamentals that, under full information, would

trigger far smaller reactions.

The mechanism behind this result is a strong feedback loop that arises when agents

observe, and draw inference from, endogenous variables. We microfounded such endogenous

signals as competitive prices. The essential features for our mechanism are (i) shocks to

local demand conditions and (ii) agents that learn from prices that reflect a combination of

aggregate and local conditions. Our approach provides foundations for the correlated signal

structures that are essential for sentiment-driven fluctuations to arise.

In this economy, shoppers observing higher prices partially attribute those prices to fa-

vorable local-demand conditions. When the effect of prices on inference is strong enough,

observation of a higher price leads shoppers to demand more, rather than fewer, inputs.

Through this process, the informational effects of prices can lead to upward-sloping aggre-

gate demand, reversing the typical comovements associated with supply shocks.
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A Appendix

A.1 Proofs of Propositions

Proof of Proposition 1. To prove uniqueness for γ ≥ 1/2, observe that the function ai(a) is

continuous, bounded above by γ−1, and monotonically decreasing in the range (−∞, (1− γ)−1).

From γ ≥ 1/2, we have (1 − γ)−1 > γ−1. Thus ai(a) intersects the 45-degree line a single

time.

To prove the existence of a−, notice that lima→−∞ ai = γ−1 and ai((1− γ)−1) = 0. By

continuity, an equilibrium a− ∈ (0, (1− γ)−1) must always exist. Moreover a− must be

monotonically decreasing in σ2 as ai is monotonically decreasing in σ2.

We now assess the conditions under which additional equilibria may also exist. Because

lima→∞ ai = γ−1 , the existence of a second equilibria (crossing the 45-degree line in Figure
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1) implies the existence of a third. Thus, we must determine whether the difference ai(a)−a
is positive anywhere in the range a > (1− γ)−1. Such a difference is positive if and only if

Φ (σ) ≡ γ (1− a (1− γ))2 (1− γa)− a (1− γ)2 σ2 > 0, (62)

which requires a < γ−1 as a necessary condition. Therefore, if two other equilibria exist they

must lie in ((1− γ)−1 , γ−1). Fixing a ∈ ((1− γ)−1 , γ−1), limσ→0 Φ (σ) is clearly positive, im-

plying that there always exists a threshold σ̄ such that two equilibria a+, a◦ ∈ ((1− γ)−1 , γ−1)

exist with a+ ≥ a◦ for σ2 ∈ (0, σ̄2).

Proof of Proposition 2. Notice that ∂Γ/∂a > 0 if and only if γ < min{(1− γ)−1, γ−1}. The

left-hand side of the fixed-point expression in (25) is downward-sloping in a and falling in σ,

implying that the fixed-point intersection au and a− must increase as σ falls. Similarly, a◦
falls and a+ grows as σ falls, which implies amplifying feedback for the former and dampening

feedback for the latter.

Proof of Proposition 3. To prove the limiting statement for γ ≥ 1/2, consider any point

aδ = 1−δ
1−γ such that δ > 0. We then have

ai(aδ) =
γδ2

γ2δ2 + σ2(1− γ)2.
(63)

Since limσ2→0 ai(aδ) = 1
γ

for any δ, the unique equilibrium must converge to the same point.

That the variance of this equilibrium approaches zero follows from equation (21).

To prove the limiting statement for γ < 1/2, recall the monotonicity of ai(a) on the

range (0, (1 − γ)−1. Following the logic of proposition 1, for any point aδ in that range,

limσ2→0 ai(aδ) = γ−1, while ai((1 − γ)−1) = 0. Thus, the intersection defining a− must

approach (1 − γ)−1. An analogous argument for the point just to the right of (1 − γ)−1

establishes that a− converges to the same value. Finally, the bounded monotonic behavior

of ai(a) establishes that for the high equilibrium limσ2→0 a+ = γ−1.

That the output variance of the high equilibrium in the limit σ → 0 is zero follows from

equation (22). The limiting variance of the two other limit equilibria can be established by

noticing that (25) implies
σ2

(1− a(1− γ))2
=
γ(1− aγ)

(1− γ)
(64)

which, substituted into (22), gives (27) for a→ (1− γ)−1.

Proof of Proposition 6. We can prove that a sentiment-free equilibrium with no aggregate

variance exists for a = γ−1 by simple substitution in (56). The limiting variance of the other

limit equilibrium at the singularity a → (1 − γ)−1 can be established by noticing that (56)
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implies that

σ2

(1− a(1− γ))2
=

1− aγ
aγ

+
1− a(1− γ)

aγ

σ2

(1− a(1− γ))2
,

which gives

σ2

(1− a(1− γ))2
= −1− aγ

1− a
.

Substituted into (55), this gives (27) for a→ (1− γ)−1.

Proposition 7. The derivative of ai(a) with respect to a is given by:

a′i(a) = − 2γ (1− γ)3 (1− (1− γ) a)σ2(
(1− γ)2 σ2 + (1− (1− γ)a)2 γ2

)2 , (65)

which is positive whenever a > 1/(1−γ)−1. Then, necessarily, a′i(a◦) > 1 and a′i(a+) ∈ (0, 1).

Concerning the stability of a−, notice that limσ→∞ a
′
i(a−) = 0 and

lim
σ2→0,a→(1−γ)−1

±

a′i(a) = ±∞,

given that, at the limit σ → 0, σ2 and (1− a (1− γ))2 go to zero at the same speed. On

the other hand, concerning the stability of au—which exists when 1 − γ < γ—notice that

limσ→∞ a
′
i(au) = 0 and

lim
σ2→0,a→γ−1

a′i(a) = lim
σ2→0,a→γ−1

− 2γ (1− γ)3 (1− (1− γ) a)σ2(
(1− γ)2 σ2 + (1− (1− γ)a)2 γ2

)2 = 0−,

which proves that the unique equilibrium au is locally unique rationalizable at the limit.

Proposition 8. The derivative a′i (a) has been already studied. We know that a′i (au) < 0,

a′i (a+) ∈ (0, 1) , a′i (a−) < 0 and a′i (a◦) > 1. Nevertheless at the limit σ → 0, where a+ = a◦
coincide, there is no neighborhood to qualify a+ a locally learnable rational expectations

equilibrium.

A.2 Derivations of the model

Proof. In this section we derive equilibrium in a version of the model extended to include

convexity in the disutility of labor and money in the utility function. The baseline model

in the text is obtained in the cashless limit with linear disutility of labor. The extended

model demonstrates our claim in the text that using the Lagrange multiplier as a numeraire

is equivalent to a more standard monetary numeraire.
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The utility function of the representative family is∫
eµi
(
logCi − φN1+α

i

)
di+ ϕ log (M/P ) (66)

and the budget constraint is

M +

∫
PiCidi =

∫
WiNidi+QZ +

∫
Πidi+M−, (67)

where α > 0 is the inverse of the Frisch labor elasticity, ϕ is a constant parameter, M is the

money holding of the family, and M− is an exogenous initial endowment of the numeraire

good “money.” Money choice is delegated to a family member, the “money holder”.

The information assumptions in the main text can be support as equilibrium outcomes

when all agents observe the prices, whether posted or shadow cost, of the resources they use.

In this case, producers see the local wage and aggregate endowment price Q, allowing them

to fully infer both local and aggregate outcomes. Workers observe the utility cost of their

labor input, which is enough for them to post an optimal labor supply schedule conditioned

on the local wage. Shoppers observe the local price Pi, as well as the shadow cost of budget

resources. The money-holder also observes the shadow cost of budget resources.

Under this more general information structure, the maximization problems of the repre-

sentative family members become

money holder : max
M
{ϕ log(M)− ΛM}

producer : max
Ni,Z(i)

{
PiN

γ
i

(
e−ζZ(i)

)1−γ −WiNi −QZ(i)

}
worker : max

Ni

{
E[Λ|Wi]WiNi − eµiφN1+α

i

}
shopper : max

Ci
{E[eµi |Pi] logCi − ΛPiCi}

where Λ denotes the Lagrange multiplier associated with the budget constraint (67).

The money holder’s first-order condition is

ϕ

M
= Λ, (68)

while market-clearing implies that M = M−. The static structure of the economy means no

further assumptions are needed to prevent rational bubbles from forming in the market for

money. When the exogenous money supply is fixed ex ante, Λ is constant so that normalizing

it is equivalent to assuming a monetary numeraire.

43



The other log-linear first-order conditions of the economy are given by:

wi = pi + (γ − 1)ni + (1− γ)z(i) − (1− γ)ζ

q = pi + γni − γz(i) − (1− γ)ζ

ci = γni + (1− γ)z(i) − (1− γ)ζ

wi = µi + αni

ci = E[µi|pi]− pi

plus the market-clearing condition for the endowment
∫
z(i)di = 0. Fixing α = 0, these first

order conditions are identical to the baseline version of the model. Moreover, notice that

in the cashless limit of this economy, i.e. in the limit ϕ → 0 with the utility weight ϕ and

money supply M− in constant proportion, (66) and (67) exactly match their analogues in

the baseline model.

Aggregate variables. Averaging the two sides of the labor supply condition, we have

w = αn. Thus, we have

αn = p+ (γ − 1)n− (1− γ)ζ

q = p+ γn− (1− γ)ζ

c = γn− (1− γ)ζ

c =

∫
E[µi|pi]− p.

This is a linear system in four unknown p, q, n, c, which can be expressed as functions of two

states
∫
E[µi|pi]di, ζ. Writing in matrix notation, we have
p

q

n

c

 =


0 0 1− γ + α 0

1 0 γ 0

0 0 0 γ−1

−1 0 0 0



p

q

n

c

+


0 1− γ
0 γ − 1

0 (1− γ) γ−1

1 0


[∫

E[µi|pi]di
ζ

]
,

whose solution is

p =
1 + α− γ

1 + α

∫
E[µi|pi]di+ (1− γ)ζ

q =

∫
E[µi|pi]di

n =
1

1 + α

∫
E[µi|pi]di

c =
γ

1 + α

∫
E[µi|pi]di− (1− γ)ζ.
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Island-specific variables. The relevant system of equations is

E[µi|pi]− ci = pi

ci = γni + (1− γ)z(i) − (1− γ)ζ

wi = pi + (γ − 1)ni + (1− γ)z(i) − (1− γ)ζ

q = pi + γni − γz(i) − (1− γ)ζ,

which constitutes a linear system in four unknown pi, ci, ni, z(i) that can be expressed as

functions of four states µi, ζ, q, E[µi|pi]. This system can be written as
pi
ci
ni
z(i)

 =


0 −1 0 0

0 0 γ 1− γ
1

1+α−γ 0 0 1−γ
1+α−γ

γ−1 0 1 0



pi
ci
ni
z(i)

+


0 0 0 1

0 γ − 1 0 0

− 1
1+α−γ − 1−γ

1+α−γ 0 0

0 (γ − 1)γ−1 −γ−1 0




µi
ζ

q

E[µi|pi]


where we already used wi = µi + αµi. The solution of the system is

ci = − γ

1 + α
µi +

1 + α(1− γ)

1 + α
E[µi|pi]− (1− γ)(q + ζ)

pi =
γ

1 + α
µi +

αγ

1 + α
E[µi|pi] + (1− γ)(q + ζ)

ni =
1

1 + α
(E[µi|pi]− µi)

z(i) = −q + E[µi|pi],

which is consistent with the expression for their relative aggregate variables.

In the case α 6= 0, notice that the price signal can equivalently be written as

p̃i =
1 + α

1 + α(1− γ)

(
pi −

αγ

1 + α
E[µi|pi]

)
= γ̃µi + (1− γ̃)(q + ζ),

where γ̃ = γ/(1 + α(1− γ)). Notice that limit sentiment equilibria now exist with γ̃ < 1/2,

which could well obtain even with γ > 1/2 for a sufficiently high α.

45


